Limit cycle bifurcations of some Liénard systems with a cuspidal loop and a homoclinic loop

Abstract In this paper, we study the number of limit cycles of some polynomial Lienard systems with a cuspidal loop and a homoclinic loop, and obtain some new results on the lower bound of the maximal number of limit cycles for these systems.

[1]  Pei Yu,et al.  Hopf bifurcations for Near-Hamiltonian Systems , 2009, Int. J. Bifurc. Chaos.

[2]  Stephen Lynch,et al.  Small-amplitude limit cycle bifurcations for Liénard systems with quadratic or cubic damping or restoring forces , 1999 .

[3]  Freddy Dumortier,et al.  Perturbations from an Elliptic Hamiltonian of Degree Four , 2001 .

[4]  Maoan Han,et al.  On Hopf Cyclicity of Planar Systems , 2000 .

[5]  Lubomir Gavrilov,et al.  Petrov modules and zeros of Abelian integrals , 1998 .

[6]  Maoan Han,et al.  Limit cycle bifurcations by perturbing a cuspidal loop in a Hamiltonian system , 2009 .

[7]  Dongmei Xiao,et al.  Bifurcations on a Five-Parameter Family of Planar Vector Field , 2008 .

[8]  Iliya D. Iliev,et al.  Complete hyperelliptic integrals of the first kind and their non-oscillation , 2002, math/0211386.

[9]  Huaiping Zhu,et al.  Limit Cycle bifurcations in Near-Hamiltonian Systems by Perturbing a Nilpotent Center , 2008, Int. J. Bifurc. Chaos.

[10]  Yulin Zhao,et al.  Abelian integrals for cubic vector fields , 1999 .

[11]  Maoan Han,et al.  Limit Cycles Near Homoclinic and Heteroclinic Loops , 2008 .

[12]  N. G. Lloyd,et al.  The number of small-amplitude limit cycles of Liénard equations , 1984, Mathematical Proceedings of the Cambridge Philosophical Society.

[13]  Valery G. Romanovski,et al.  Limit cycle bifurcations of some Liénard systems , 2010 .

[14]  Chengzhi Li,et al.  Perturbation from an elliptic Hamiltonian of degree four—IV figure eight-loop , 2003 .

[15]  Abraham C.-L. Chian,et al.  Polynomial Hamiltonian systems with a nilpotent critical point , 2010 .

[16]  Maoan Han,et al.  Limit Cycle bifurcations of Some LiéNard Systems with a Nilpotent Cusp , 2010, Int. J. Bifurc. Chaos.

[17]  Jaume Llibre,et al.  Polynomial systems : a lower bound for the weakened 16th Hilbert problem , 2001 .

[18]  Pei Yu,et al.  Limit cycles in generalized Liénard systems , 2006 .

[19]  Maoan Han,et al.  Melnikov function and limit cycle bifurcation from a nilpotent center , 2008 .