Capturing foraging and resting behavior using nested multivariate Markov models in an air-breathing marine vertebrate

[1]  B. Fry,et al.  Signals from the south; humpback whales carry messages of Antarctic sea‐ice ecosystem variability , 2018, Global change biology.

[2]  Ben. G. Weinstein,et al.  Dynamic foraging of a top predator in a seasonal polar marine environment , 2017, Oecologia.

[3]  J. Kohut,et al.  Factors that affect the nearshore aggregations of Antarctic krill in a biological hotspot , 2017 .

[4]  Ben. G. Weinstein,et al.  Identifying overlap between humpback whale foraging grounds and the Antarctic krill fishery , 2017 .

[5]  S. Stammerjohn,et al.  Changing distributions of sea ice melt and meteoric water west of the Antarctic Peninsula , 2017 .

[6]  Christopher D. Jones,et al.  Overwinter habitat selection by Antarctic krill under varying sea-ice conditions: implications for top predators and fishery management , 2017 .

[7]  Roland Langrock,et al.  Multi-scale Modeling of Animal Movement and General Behavior Data Using Hidden Markov Models with Hierarchical Structures , 2017, Journal of Agricultural, Biological and Environmental Statistics.

[8]  S. Stammerjohn,et al.  Responses of Antarctic Marine and Freshwater Ecosystems to Changing Ice Conditions , 2016 .

[9]  G. Williams,et al.  A review of recent changes in Southern Ocean sea ice, their drivers and forcings , 2016 .

[10]  Meng Zhou,et al.  Winter distribution and size structure of Antarctic krill Euphausia superba populations in-shore along the West Antarctic Peninsula , 2016 .

[11]  R. B. Tyson,et al.  Does optimal foraging theory predict the foraging performance of a large air-breathing marine predator? , 2016, Animal Behaviour.

[12]  Simeon L. Hill,et al.  Stakeholder perspectives on ecosystem-based management of the Antarctic krill fishery , 2016 .

[13]  Kim Holland,et al.  Key Questions in Marine Megafauna Movement Ecology. , 2016, Trends in ecology & evolution.

[14]  J. Gutt,et al.  Horizontal niche partitioning of humpback and fin whales around the West Antarctic Peninsula: evidence from a concurrent whale and krill survey , 2016, Polar Biology.

[15]  Jacob S. Ivan,et al.  A functional model for characterizing long‐distance movement behaviour , 2016 .

[16]  Roland Langrock,et al.  Analysis of animal accelerometer data using hidden Markov models , 2016, 1602.06466.

[17]  Sophie Bestley,et al.  Taking animal tracking to new depths: synthesizing horizontal--vertical movement relationships for four marine predators. , 2015, Ecology.

[18]  Brett T McClintock,et al.  When to be discrete: the importance of time formulation in understanding animal movement , 2014, Movement Ecology.

[19]  R. B. Tyson,et al.  Extreme diel variation in the feeding behavior of humpback whales along the western Antarctic Peninsula during autumn , 2013 .

[20]  Brett T. McClintock,et al.  Combining individual animal movement and ancillary biotelemetry data to investigate population-level activity budgets , 2013 .

[21]  M. McKenna,et al.  Integrative Approaches to the Study of Baleen Whale Diving Behavior, Feeding Performance, and Foraging Ecology , 2013 .

[22]  Christophe Guinet,et al.  Integrative modelling of animal movement: incorporating in situ habitat and behavioural information for a migratory marine predator , 2013, Proceedings of the Royal Society B: Biological Sciences.

[23]  A. Friedlaender,et al.  Initial density estimates of humpback whales Megaptera novaeangliae in the inshore waters of the western Antarctic Peninsula during the late autumn , 2012 .

[24]  Colin Ware,et al.  Shallow and deep lunge feeding of humpback whales in fjords of the West Antarctic Peninsula , 2011 .

[25]  D. Costa,et al.  Ecological niche modeling of sympatric krill predators around Marguerite Bay, Western Antarctic Peninsula , 2011 .

[26]  E. Hazen,et al.  Super-Aggregations of Krill and Humpback Whales in Wilhelmina Bay, Antarctic Peninsula , 2011, PloS one.

[27]  J. Santora,et al.  Spatial association between hotspots of baleen whales and demographic patterns of Antarctic krill Euphausia superba suggests size-dependent predation , 2010 .

[28]  E. Murphy,et al.  Variability and predictability of Antarctic krill swarm structure , 2009 .

[29]  R. Leaper,et al.  Changes in the Antarctic sea ice ecosystem: potential effects on krill and baleen whales , 2008 .

[30]  Peter H. Wiebe,et al.  Whale distribution in relation to prey abundance and oceanographic processes in shelf waters of the Western Antarctic Peninsula , 2006 .

[31]  S. Nicol Krill, Currents, and Sea Ice: Euphausia superba and Its Changing Environment , 2006 .

[32]  Ian D. Jonsen,et al.  ROBUST STATE-SPACE MODELING OF ANIMAL MOVEMENT DATA , 2005 .

[33]  J. Hildebrand,et al.  Seasonal variability in whale encounters in the Western Antarctic Peninsula , 2004 .

[34]  Frederick Armstrong,et al.  Antarctic Krill Under Sea Ice: Elevated Abundance in a Narrow Band Just South of Ice Edge , 2002, Science.

[35]  William K. de la Mare,et al.  Abrupt mid-twentieth-century decline in Antarctic sea-ice extent from whaling records , 1997, Nature.

[36]  W. Dolphin,et al.  Foraging dive patterns of humpback whales, Megaptera novaeangliae, in southeast Alaska: a cost–benefit analysis , 1988 .

[37]  Eliezer Gurarie,et al.  What is the animal doing? Tools for exploring behavioural structure in animal movements. , 2016, The Journal of animal ecology.

[38]  L. Börger EDITORIAL: Stuck in motion? Reconnecting questions and tools in movement ecology. , 2016, The Journal of animal ecology.

[39]  V. Siegel,et al.  Distribution, biomass and demography of Antarctic krill , 2016 .

[40]  V. Siegel,et al.  Chapter 2: Distribution, biomass and demography of Antarctic Krill, Euphausia superba , 2016 .

[41]  G. Andrew,et al.  arm: Data Analysis Using Regression and Multilevel/Hierarchical Models , 2014 .

[42]  Andrew Gelman,et al.  Data Analysis Using Regression and Multilevel/Hierarchical Models , 2006 .

[43]  Martyn Plummer,et al.  JAGS: A program for analysis of Bayesian graphical models using Gibbs sampling , 2003 .