Attosecond science

Abstract Scientists have been developing sources of light with ever-shorter pulse durations, in order to study motion in systems ranging from a golfer’s swing to the motion of atoms within molecules. The shortest pulses produced to date are under 60 attoseconds, i.e. s. One attosecond is to one second as one second is to the age of the universe. For comparison, the classical orbital period of an electron in a hydrogen atom is 150 attoseconds. Attosecond pulses were first produced in 2001. This article describes how attosecond pulses are generated and how they are measured. Some applications of attosecond pulses are described, such as measuring the delay in photoionisation, or observing molecular dissociation dynamics.

[1]  P. Corkum,et al.  Time delay in molecular photoionization , 2015, 1512.03788.

[2]  P. Corkum,et al.  Subfemtosecond pulses. , 1994, Optics letters.

[3]  H. G. Muller,et al.  Attosecond Synchronization of High-Harmonic Soft X-rays , 2003, Science.

[4]  Stephen R. Leone,et al.  Isolated attosecond pulses from ionization gating of high-harmonic emission , 2009 .

[5]  A. Starace Theory of Atomic Photoionization , 1982 .

[6]  J. Levesque,et al.  Tomographic imaging of molecular orbitals , 2004, Nature.

[7]  Single sub − 50 − attosecond pulse generation from chirp-compensated harmonic radiation using material dispersion , 2004 .

[8]  Fabien Quéré,et al.  Frequency-resolved optical gating for complete reconstruction of attosecond bursts , 2005 .

[9]  P. Corkum,et al.  Attosecond streak camera. , 2002, Physical review letters.

[10]  P. Corkum,et al.  Manipulation of quantum paths for space–time characterization of attosecond pulses , 2013, Nature Physics.

[11]  B. Schmidt,et al.  Frequency domain optical parametric amplification , 2014, Nature Communications.

[12]  P. Corkum,et al.  Plasma perspective on strong field multiphoton ionization. , 1993, Physical review letters.

[13]  Joachim Burgdörfer,et al.  Attosecond chronoscopy of photoemission , 2015 .

[14]  Knight,et al.  Calculation of the background emitted during high-harmonic generation. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[15]  Ian J. Spalding,et al.  Laser physics , 1977, Nature.

[16]  T. Fordell,et al.  Probing single-photon ionization on the attosecond time scale. , 2010, Physical review letters.

[17]  Harold E. Edgerton,et al.  Electronic flash, strobe , 1970 .

[18]  Stephen R. Leone,et al.  Real-time observation of valence electron motion , 2010, Nature.

[19]  S. Leone,et al.  Tracking dissociation dynamics of strong-field ionized 1,2-dibromoethane with femtosecond XUV transient absorption spectroscopy. , 2016, Physical chemistry chemical physics : PCCP.

[20]  Fabien Quere,et al.  Photonic streaking of attosecond pulse trains , 2013, Nature Photonics.

[21]  D. Villeneuve,et al.  In situ attosecond pulse characterization techniques to measure the electromagnetic phase , 2016 .

[22]  L'Huillier,et al.  Coherence control of high-order harmonics. , 1995, Physical review letters.

[23]  R. Holzwarth,et al.  Attosecond spectroscopy in condensed matter , 2007, Nature.

[24]  M. Murnane,et al.  Bright Coherent Ultrahigh Harmonics in the keV X-ray Regime from Mid-Infrared Femtosecond Lasers , 2012, Science.

[25]  Ivanov,et al.  Theory of high-harmonic generation by low-frequency laser fields. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[26]  P. Corkum,et al.  Manipulating quantum paths for novel attosecond measurement methods , 2014, Nature Photonics.

[27]  A low-loss, robust setup for double optical gating of high harmonic generation , 2008 .

[28]  Zenghu Chang,et al.  Dramatic extension of the high-order harmonic cutoff by using a long-wavelength driving field , 2001 .

[29]  I. Ivanov,et al.  Delay in atomic photoionization. , 2010, Physical review letters.

[30]  P. Corkum,et al.  Measuring and controlling the birth of attosecond XUV pulses , 2006 .

[31]  J Burgdörfer,et al.  Delay in Photoemission , 2010, Science.

[32]  Kun Zhao,et al.  53-attosecond X-ray pulses reach the carbon K-edge , 2017, Nature Communications.

[33]  F. Krausz,et al.  Enhanced phase-matching for generation of soft X-ray harmonics and attosecond pulses in atomic gases. , 2007, Optics express.

[34]  F. Krausz Attosecond Physics , 2007, 2007 Conference on Lasers and Electro-Optics - Pacific Rim.

[35]  J. Tate,et al.  Scaling of wave-packet dynamics in an intense midinfrared field. , 2007, Physical review letters.

[36]  Jorge J. Rocca,et al.  High-average-power, 100-Hz-repetition-rate, tabletop soft-x-ray lasers at sub-15-nm wavelengths , 2014 .

[37]  C. Keitel,et al.  Lorentz Meets Fano in Spectral Line Shapes: A Universal Phase and Its Laser Control , 2013, Science.

[38]  P. Corkum,et al.  Wavelength scaling of high harmonic generation efficiency. , 2009, Physical review letters.

[39]  Schafer,et al.  High-order harmonic generation from atoms and ions in the high intensity regime. , 1992, Physical review letters.

[40]  J. M. Dahlström,et al.  Theory of attosecond delays in laser-assisted photoionization , 2011, 1112.4144.

[41]  Giulio Cerullo,et al.  Design criteria for ultrafast optical parametric amplifiers , 2016 .

[42]  K. Eikema,et al.  Ultrafast Optical Parametric Chirped-Pulse Amplification , 2012, IEEE Journal of Selected Topics in Quantum Electronics.

[43]  P. Corkum,et al.  Attosecond pulses measured from the attosecond lighthouse , 2016, Nature Photonics.

[44]  P. Corkum,et al.  Petahertz optical oscilloscope , 2013, Nature Photonics.

[45]  L. A. Lompré,et al.  Multiple-harmonic conversion of 1064 nm radiation in rare gases , 1988 .

[46]  R. Santra,et al.  Maximizing hole coherence in ultrafast photoionization of argon with an optimization by sequential parametrization update , 2016 .

[47]  Charles K. Rhodes,et al.  Studies of multiphoton production of vacuum-ultraviolet radiation in the rare gases , 1987 .