Pediatric high-grade astrocytomas: a distinct neuro-oncological paradigm

[1]  D. Gutmann,et al.  The molecular and cell biology of pediatric low-grade gliomas , 2014, Oncogene.

[2]  J. Huse,et al.  Evaluation of Histone 3 Lysine 27 Trimethylation (H3K27me3) and Enhancer of Zest 2 (EZH2) in Pediatric Glial and Glioneuronal Tumors Shows Decreased H3K27me3 in H3F3A K27M Mutant Glioblastomas , 2013, Brain pathology.

[3]  N. Gerges,et al.  Pediatric high-grade astrocytomas: a distinct neuro-oncological paradigm , 2013, Genome Medicine.

[4]  Roland Eils,et al.  Recurrent somatic alterations of FGFR1 and NTRK2 in pilocytic astrocytoma , 2013, Nature Genetics.

[5]  V. P. Collins,et al.  The eEF2 Kinase Confers Resistance to Nutrient Deprivation by Blocking Translation Elongation , 2013, Cell.

[6]  B. Garcia,et al.  Inhibition of PRC2 Activity by a Gain-of-Function H3 Mutation Found in Pediatric Glioblastoma , 2013, Science.

[7]  Fang Wang,et al.  An Inhibitor of Mutant IDH1 Delays Growth and Promotes Differentiation of Glioma Cells , 2013, Science.

[8]  A. Ashworth,et al.  Histone H3.3. mutations drive pediatric glioblastoma through upregulation of MYCN. , 2013, Cancer discovery.

[9]  Sabine Mueller,et al.  The histone H3.3K27M mutation in pediatric glioma reprograms H3K27 methylation and gene expression. , 2013, Genes & development.

[10]  Liliana Goumnerova,et al.  Genomic analysis of diffuse pediatric low-grade gliomas identifies recurrent oncogenic truncating rearrangements in the transcription factor MYBL1 , 2013, Proceedings of the National Academy of Sciences.

[11]  W. Vandertop,et al.  In Vitro Drug Response and Efflux Transporters Associated with Drug Resistance in Pediatric High Grade Glioma and Diffuse Intrinsic Pontine Glioma , 2013, PloS one.

[12]  Heather L. Mulder,et al.  Whole-genome sequencing identifies genetic alterations in pediatric low-grade gliomas , 2013, Nature Genetics.

[13]  Gary L. Gallia,et al.  TERT promoter mutations occur frequently in gliomas and a subset of tumors derived from cells with low rates of self-renewal , 2013, Proceedings of the National Academy of Sciences.

[14]  A. Fontebasso,et al.  Chromatin Remodeling Defects in Pediatric and Young Adult Glioblastoma: A Tale of a Variant Histone 3 Tail , 2013, Brain pathology.

[15]  C. Kramm,et al.  H3F3A K27M mutation in pediatric CNS tumors: a marker for diffuse high-grade astrocytomas. , 2013, American journal of clinical pathology.

[16]  David T. W. Jones,et al.  Mutations in SETD2 and genes affecting histone H3K36 methylation target hemispheric high-grade gliomas , 2013, Acta Neuropathologica.

[17]  N. Yoo,et al.  Somatic mutation of H3F3A, a chromatin remodeling gene, is rare in acute leukemias and non‐Hodgkin lymphoma , 2013, European journal of haematology.

[18]  T. Pietsch,et al.  H3.3 G34R mutations in pediatric primitive neuroectodermal tumors of central nervous system (CNS-PNET) and pediatric glioblastomas: possible diagnostic and therapeutic implications? , 2013, Journal of Neuro-Oncology.

[19]  Eric A Bushong,et al.  Dedifferentiation of Neurons and Astrocytes by Oncogenes Can Induce Gliomas in Mice , 2012, Science.

[20]  Scott L. Pomeroy,et al.  Medulloblastomics: the end of the beginning , 2012, Nature Reviews Cancer.

[21]  J. Barnholtz-Sloan,et al.  CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2007-2011. , 2012, Neuro-oncology.

[22]  David T. W. Jones,et al.  Hotspot mutations in H3F3A and IDH1 define distinct epigenetic and biological subgroups of glioblastoma. , 2012, Cancer cell.

[23]  C. Eberhart,et al.  Methylome alterations "mark" new therapeutic opportunities in glioblastoma. , 2012, Cancer cell.

[24]  Timothy A. Chan,et al.  Whole exome sequencing identifies ATRX mutation as a key molecular determinant in lower-grade glioma , 2012, Oncotarget.

[25]  Dong-Anh Khuong-Quang,et al.  Les glioblastomes de l’enfant et du jeune adulte - Une histoire de mutations d’histone et de remodelage de la chromatine , 2012 .

[26]  D. Brat,et al.  Transforming Fusions of FGFR and TACC Genes in Human Glioblastoma , 2012, Science.

[27]  Andrey Korshunov,et al.  Frequent ATRX mutations and loss of expression in adult diffuse astrocytic tumors carrying IDH1/IDH2 and TP53 mutations , 2012, Acta Neuropathologica.

[28]  Matthew J. Betts,et al.  Dissecting the genomic complexity underlying medulloblastoma , 2012, Nature.

[29]  G. Reifenberger,et al.  IDH1(R132H) mutation increases murine haematopoietic progenitors and alters epigenetics , 2012, Nature.

[30]  Jill P. Mesirov,et al.  MEDULLOBLASTOMA EXOME SEQUENCING UNCOVERS SUBTYPE-SPECIFIC SOMATIC MUTATIONS , 2012, Nature.

[31]  R. McLendon,et al.  Frequent ATRX, CIC, FUBP1 and IDH1 mutations refine the classification of malignant gliomas , 2012, Oncotarget.

[32]  Elaine R. Mardis,et al.  Novel mutations target distinct subgroups of medulloblastoma , 2012, Nature.

[33]  David T. W. Jones,et al.  K27M mutation in histone H3.3 defines clinically and biologically distinct subgroups of pediatric diffuse intrinsic pontine gliomas , 2012, Acta Neuropathologica.

[34]  S. Berger,et al.  IDH mutation impairs histone demethylation and results in a block to cell differentiation , 2012, Nature.

[35]  David T. W. Jones,et al.  Driver mutations in histone H3.3 and chromatin remodelling genes in paediatric glioblastoma , 2012, Nature.

[36]  Li Ding,et al.  Somatic Histone H3 Alterations in Paediatric Diffuse Intrinsic Pontine Gliomas and Non-Brainstem Glioblastomas , 2012, Nature Genetics.

[37]  Ovidiu C. Andronesi,et al.  Detection of 2-Hydroxyglutarate in IDH-Mutated Glioma Patients by In Vivo Spectral-Editing and 2D Correlation Magnetic Resonance Spectroscopy , 2012, Science Translational Medicine.

[38]  Mitchel S. Berger,et al.  Magnetic Resonance of 2-Hydroxyglutarate in IDH1-Mutated Low-Grade Gliomas , 2012, Science Translational Medicine.

[39]  D. Figarella-Branger,et al.  Magnetic Resonance Metabolic Imaging of Glioma , 2012, Science Translational Medicine.

[40]  David T. W. Jones,et al.  MAPK pathway activation in pilocytic astrocytoma , 2011, Cellular and Molecular Life Sciences.

[41]  Scott L. Pomeroy,et al.  Molecular subgroups of medulloblastoma: the current consensus , 2011, Acta Neuropathologica.

[42]  Barbara S. Paugh,et al.  Targeted Therapy for BRAFV600E Malignant Astrocytoma , 2011, Clinical Cancer Research.

[43]  Gary D Bader,et al.  Delineation of two clinically and molecularly distinct subgroups of posterior fossa ependymoma. , 2011, Cancer cell.

[44]  R. McLendon,et al.  Altered Telomeres in Tumors with ATRX and DAXX Mutations , 2011, Science.

[45]  S. Pfister,et al.  Genetic Aberrations Leading to MAPK Pathway Activation Mediate Oncogene-Induced Senescence in Sporadic Pilocytic Astrocytomas , 2011, Clinical Cancer Research.

[46]  Hendrik Witt,et al.  Medulloblastoma comprises four distinct molecular variants. , 2011, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[47]  Jing Ma,et al.  RAF gene fusion breakpoints in pediatric brain tumors are characterized by significant enrichment of sequence microhomology. , 2011, Genome research.

[48]  P. Kleihues,et al.  Genetic profile of astrocytic and oligodendroglial gliomas , 2011, Brain Tumor Pathology.

[49]  David T. W. Jones,et al.  Oncogenic FAM131B–BRAF fusion resulting from 7q34 deletion comprises an alternative mechanism of MAPK pathway activation in pilocytic astrocytoma , 2011, Acta Neuropathologica.

[50]  Kirsten Schmieder,et al.  Analysis of BRAF V600E mutation in 1,320 nervous system tumors reveals high mutation frequencies in pleomorphic xanthoastrocytoma, ganglioglioma and extra-cerebellar pilocytic astrocytoma , 2011, Acta Neuropathologica.

[51]  Zev A. Binder,et al.  The Genetic Landscape of the Childhood Cancer Medulloblastoma , 2011, Science.

[52]  Bin Wang,et al.  Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of α-ketoglutarate-dependent dioxygenases. , 2011, Cancer cell.

[53]  J. Licht,et al.  Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation. , 2010, Cancer cell.

[54]  D. Schiff,et al.  Update on molecular findings, management and outcome in low-grade gliomas , 2010, Nature Reviews Neurology.

[55]  D. Frappaz,et al.  Brain tumors: from childhood through adolescence into adulthood. , 2010, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[56]  Yiai Tong,et al.  Subtypes of medulloblastoma have distinct developmental origins , 2010, Nature.

[57]  Richard G Grundy,et al.  Integrated molecular genetic profiling of pediatric high-grade gliomas reveals key differences with the adult disease. , 2010, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[58]  R. Wilson,et al.  Identification of a CpG island methylator phenotype that defines a distinct subgroup of glioma. , 2010, Cancer cell.

[59]  A. Montpetit,et al.  Genome-wide profiling using single-nucleotide polymorphism arrays identifies novel chromosomal imbalances in pediatric glioblastomas. , 2010, Neuro-oncology.

[60]  S. Gabriel,et al.  Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. , 2010, Cancer cell.

[61]  V. Velculescu,et al.  Mutant metabolic enzymes are at the origin of gliomas. , 2009, Cancer research.

[62]  R. McLendon,et al.  IDH1 and IDH2 mutations in gliomas. , 2009, The New England journal of medicine.

[63]  G. Reifenberger,et al.  Molecular predictors of progression-free and overall survival in patients with newly diagnosed glioblastoma: a prospective translational study of the German Glioma Network. , 2009, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[64]  H. Zentgraf,et al.  Monoclonal antibody specific for IDH1 R132H mutation , 2009, Acta Neuropathologica.

[65]  A. Montpetit,et al.  Duplication of 7q34 is specific to juvenile pilocytic astrocytomas and a hallmark of cerebellar and optic pathway tumours , 2009, British Journal of Cancer.

[66]  D. Pearson,et al.  Oncogenic RAF1 rearrangement and a novel BRAF mutation as alternatives to KIAA1549:BRAF fusion in activating the MAPK pathway in pilocytic astrocytoma , 2009, Oncogene.

[67]  David T. W. Jones,et al.  Tandem duplication producing a novel oncogenic BRAF fusion gene defines the majority of pilocytic astrocytomas. , 2008, Cancer research.

[68]  D. Busam,et al.  An Integrated Genomic Analysis of Human Glioblastoma Multiforme , 2008, Science.

[69]  Joshua M. Korn,et al.  Comprehensive genomic characterization defines human glioblastoma genes and core pathways , 2008, Nature.

[70]  Dirk Troost,et al.  Integrated Genomics Identifies Five Medulloblastoma Subtypes with Distinct Genetic Profiles, Pathway Signatures and Clinicopathological Features , 2008, PloS one.

[71]  G. Reifenberger,et al.  BRAF gene duplication constitutes a mechanism of MAPK pathway activation in low-grade astrocytomas. , 2008, The Journal of clinical investigation.

[72]  L. Mahadevan,et al.  Dynamic histone H3 methylation during gene induction: HYPB/Setd2 mediates all H3K36 trimethylation , 2007, The EMBO journal.

[73]  S. Albrecht,et al.  Gene Expression Profiling from Formalin-Fixed Paraffin-Embedded Tumors of Pediatric Glioblastoma , 2007, Clinical Cancer Research.

[74]  John Sampson,et al.  Bevacizumab plus irinotecan in recurrent glioblastoma multiforme. , 2007, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[75]  B. Scheithauer,et al.  The 2007 WHO Classification of Tumours of the Central Nervous System , 2007, Acta Neuropathologica.

[76]  P. Liberski,et al.  Molecular profiling identifies prognostic subgroups of pediatric glioblastoma and shows increased YB-1 expression in tumors. , 2007, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[77]  Darell D. Bigner,et al.  Phase II Trial of Bevacizumab and Irinotecan in Recurrent Malignant Glioma , 2007, Clinical Cancer Research.

[78]  Thomas D. Wu,et al.  Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis. , 2006, Cancer cell.

[79]  T. MacDonald,et al.  Pediatric High-grade Glioma: Molecular Genetic Clues for Innovative Therapeutic Approaches , 2005, Journal of Neuro-Oncology.

[80]  Koji Yoshimoto,et al.  Molecular determinants of the response of glioblastomas to EGFR kinase inhibitors. , 2005, The New England journal of medicine.

[81]  B. Anandh,et al.  Expression of p53, EGFR, pRb and bcl-2 Proteins in Pediatric Glioblastoma Multiforme: A Study of 54 Patients , 2005, Pediatric Neurosurgery.

[82]  P. Kleihues,et al.  Population-based studies on incidence, survival rates, and genetic alterations in astrocytic and oligodendroglial gliomas. , 2005, Journal of neuropathology and experimental neurology.

[83]  Martin J. van den Bent,et al.  Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. , 2005, The New England journal of medicine.

[84]  R. Mirimanoff,et al.  MGMT gene silencing and benefit from temozolomide in glioblastoma. , 2005, The New England journal of medicine.

[85]  C. James,et al.  The histone H 3 . 3 K 27 M mutation in pediatric glioma reprograms H 3 K 27 methylation and gene expression , 2013 .

[86]  N. Gerges,et al.  [Mutations in histone H3.3 and chromatin remodeling genes drive pediatric and young adult glioblastomas]. , 2012, Medecine sciences : M/S.

[87]  C. Kruchko,et al.  CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2005-2009. , 2012, Neuro-oncology.

[88]  Steven J. M. Jones,et al.  Subgroup-specific structural variation across 1,000 medulloblastoma genomes , 2012, Nature.

[89]  Barbara S. Paugh,et al.  Targeted Therapy for Braf V600e Malignant Astrocytoma Statement of Translational Relevance , 2022 .

[90]  D. Brat,et al.  IDH1 mutations are common in malignant gliomas arising in adolescents: a report from the Children’s Oncology Group , 2010, Child's Nervous System.

[91]  Frank M. Sacks,et al.  IDH 1 and IDH 2 Mutations in Gliomas , 2009 .

[92]  J. Uhm IDH1 and IDH2 Mutations in Gliomas , 2009 .