The Use of Presence Data in Modelling Demand for Transportation

We consider the applicability of the data from operators of cellular systems to modelling demand for transportation. While individual-level data may contain precise paths of movement, stringent privacy rules prohibit their use without consent. Presence data aggregate the individual-level data to information on the numbers of transactions at each base transceiver station (BTS) per each time period. Our work is aimed at demonstrating value of such aggregate data for mobility management while maintaining privacy of users. In particular, given mobile subscriber activity aggregated to short time intervals for a zone, a convex optimisation problem estimates most likely transitions between zones. We demonstrate the method on presence data from Warsaw, Poland, and compare with official demand estimates obtained with classical econometric methods.

[1]  A. Volgenant,et al.  A shortest augmenting path algorithm for dense and sparse linear assignment problems , 1987, Computing.

[2]  Botond Rajna,et al.  Travel demand estimation and network assignment based on cellular network data , 2016, Comput. Commun..

[3]  Marco Cuturi,et al.  Sinkhorn Distances: Lightspeed Computation of Optimal Transport , 2013, NIPS.

[4]  Alexandre M. Bayen,et al.  Understanding Road Usage Patterns in Urban Areas , 2012, Scientific Reports.

[5]  N. F. Stewart,et al.  The Gravity Model in Transportation Analysis - Theory and Extensions , 1990 .

[6]  Haoyi Xiong,et al.  CT-Mapper: Mapping sparse multimodal cellular trajectories using a multilayer transportation network , 2016, Comput. Commun..

[7]  Eric Fleury,et al.  Call detail records to characterize usages and mobility events of phone users , 2016, Comput. Commun..

[8]  Stefano Secci,et al.  Estimating Real Human Trajectories through Mobile Phone Data , 2013, 2013 IEEE 14th International Conference on Mobile Data Management.

[9]  Jaroslaw Legierski,et al.  Clustering of Mobile Subscriber's Location Statistics for Travel Demand Zones Diversity , 2017, CISIM.

[10]  David W. Jacobs,et al.  Approximate earth mover’s distance in linear time , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[11]  Alexander Schrijver,et al.  Combinatorial optimization. Polyhedra and efficiency. , 2003 .

[12]  Xiaoyun Chen,et al.  A Linear Approximate Algorithm for Earth Mover's Distance with Thresholded Ground Distance , 2014 .

[13]  Marco Luca Sbodio,et al.  Data-Driven Transit Network Design From Mobile Phone Trajectories , 2016, IEEE Transactions on Intelligent Transportation Systems.

[14]  Carlo Ratti,et al.  Cellular Census: Explorations in Urban Data Collection , 2007, IEEE Pervasive Computing.

[15]  François Le Gall,et al.  Powers of tensors and fast matrix multiplication , 2014, ISSAC.

[16]  Edward D. Kim,et al.  Combinatorics and geometry of transportation polytopes: An update , 2013, Discrete Geometry and Algebraic Combinatorics.

[17]  Leonidas J. Guibas,et al.  The Earth Mover's Distance as a Metric for Image Retrieval , 2000, International Journal of Computer Vision.

[18]  Christos Faloutsos,et al.  A linear-time approximation of the earth mover's distance , 2011, CIKM '11.

[19]  Yuxin Deng,et al.  The Kantorovich Metric in Computer Science: A Brief Survey , 2009, QAPL.

[20]  Fahui Wang,et al.  Estimating O–D travel time matrix by Google Maps API: implementation, advantages, and implications , 2011, Ann. GIS.

[21]  Subhash Khot,et al.  Nonembeddability theorems via Fourier analysis , 2005, 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS'05).

[22]  Jacek Gondzio,et al.  Interior point methods 25 years later , 2012, Eur. J. Oper. Res..

[23]  Peter J. Bickel,et al.  The Earth Mover's distance is the Mallows distance: some insights from statistics , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[24]  Michael Werman,et al.  Fast and robust Earth Mover's Distances , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[25]  Ronitt Rubinfeld,et al.  Sublinear Time Algorithms for Earth Mover’s Distance , 2009, Theory of Computing Systems.

[26]  Haibin Ling,et al.  An Efficient Earth Mover's Distance Algorithm for Robust Histogram Comparison , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[27]  Davide Tosi,et al.  Big Data from Cellular Networks: Real Mobility Scenarios for Future Smart Cities , 2016, 2016 IEEE Second International Conference on Big Data Computing Service and Applications (BigDataService).

[28]  S. Rachev,et al.  Mass transportation problems , 1998 .

[29]  Ilias Diakonikolas,et al.  Optimal Algorithms for Testing Closeness of Discrete Distributions , 2013, SODA.

[30]  Marco Luca Sbodio,et al.  AllAboard: Visual Exploration of Cellphone Mobility Data to Optimise Public Transport , 2016, IEEE Trans. Vis. Comput. Graph..

[31]  Alexandr Andoni,et al.  Earth mover distance over high-dimensional spaces , 2008, SODA '08.

[32]  Ramón Cáceres,et al.  A Tale of One City: Using Cellular Network Data for Urban Planning , 2011, IEEE Pervasive Computing.

[33]  H. Kuhn The Hungarian method for the assignment problem , 1955 .

[34]  C. Mallows A Note on Asymptotic Joint Normality , 1972 .