Semiparametric Bayesian Inference for Local Extrema of Functions in the Presence of Noise
暂无分享,去创建一个
[1] Meng Li,et al. Optimal plug-in Gaussian processes for modelling derivatives , 2022, 2210.11626.
[2] Debdeep Pati,et al. Modality-Constrained Density Estimation via Deformable Templates , 2021, Technometrics.
[3] Zejian Liu,et al. Equivalence of Convergence Rates of Posterior Distributions and Bayes Estimators for Functions and Nonparametric Functionals , 2020, 2011.13967.
[4] M. Vannucci,et al. Bayesian inference for stationary points in Gaussian process regression models for event‐related potentials analysis , 2020, Biometrics.
[5] John F. Magnotti,et al. Functional group bridge for simultaneous regression and support estimation , 2020, Biometrics.
[6] Meng Li,et al. On the Estimation of Derivatives Using Plug-in KRR Estimators , 2020, 2006.01350.
[7] Meng Li,et al. Non-asymptotic Analysis in Kernel Ridge Regression , 2020, ArXiv.
[8] L. Devroye,et al. The total variation distance between high-dimensional Gaussians , 2018, 1810.08693.
[9] Yusha Liu,et al. Function-on-scalar quantile regression with application to mass spectrometry proteomics data , 2018, The Annals of Applied Statistics.
[10] Debdeep Pati,et al. Frequentist coverage and sup-norm convergence rate in Gaussian process regression , 2017, 1708.04753.
[11] Aad van der Vaart,et al. Fundamentals of Nonparametric Bayesian Inference , 2017 .
[12] A. Bhattacharya,et al. Adaptive Bayesian inference in the Gaussian sequence model using exponential-variance priors , 2015 .
[13] C. Abraham,et al. Bayesian regression with B‐splines under combinations of shape constraints and smoothness properties , 2015 .
[14] Subhashis Ghosal,et al. Supremum Norm Posterior Contraction and Credible Sets for Nonparametric Multivariate Regression , 2014, 1411.6716.
[15] Dan Cheng,et al. MULTIPLE TESTING OF LOCAL MAXIMA FOR DETECTION OF PEAKS IN RANDOM FIELDS. , 2014, Annals of statistics.
[16] A. V. D. Vaart,et al. BAYESIAN LINEAR REGRESSION WITH SPARSE PRIORS , 2014, 1403.0735.
[17] R. Nickl,et al. On the Bernstein–von Mises phenomenon for nonparametric Bayes procedures , 2013, 1310.2484.
[18] Martin J. Wainwright,et al. Divide and conquer kernel ridge regression: a distributed algorithm with minimax optimal rates , 2013, J. Mach. Learn. Res..
[19] J. Rousseau,et al. A Bernstein–von Mises theorem for smooth functionals in semiparametric models , 2013, 1305.4482.
[20] V. A. Menegatto,et al. Reproducing properties of differentiable Mercer‐like kernels , 2012 .
[21] I. Castillo. A semiparametric Bernstein–von Mises theorem for Gaussian process priors , 2012 .
[22] Armin Schwartzman,et al. MULTIPLE TESTING OF LOCAL MAXIMA FOR DETECTION OF PEAKS IN 1D. , 2011, Annals of statistics.
[23] M. Wainwright,et al. Sampled forms of functional PCA in reproducing kernel Hilbert spaces , 2011, 1109.3336.
[24] Thomas S. Shively,et al. Nonparametric function estimation subject to monotonicity, convexity and other shape constraints , 2011 .
[25] S. Walker,et al. A Bayesian approach to non‐parametric monotone function estimation , 2009 .
[26] Mary C. Meyer. INFERENCE USING SHAPE-RESTRICTED REGRESSION SPLINES , 2008, 0811.1705.
[27] Christian Eggeling,et al. Fluorescence Nanoscopy in Whole Cells by Asynchronous Localization of Photoswitching Emitters , 2007, Biophysical journal.
[28] A. Kovac,et al. Smooth functions and local extreme values , 2007, Comput. Stat. Data Anal..
[29] A. Egner,et al. Resolution of λ /10 in fluorescence microscopy using fast single molecule photo-switching , 2007 .
[30] Ding-Xuan Zhou,et al. Learning Theory: An Approximation Theory Viewpoint , 2007 .
[31] Yongdai Kim. The Bernstein–von Mises theorem for the proportional hazard model , 2006, math/0611230.
[32] Rui Liu,et al. Nonparametric Inference for Local Extrema with Application to Oligonucleotide Microarray Data in Yeast Genome , 2006, Biometrics.
[33] David B Dunson,et al. A transformation approach for incorporating monotone or unimodal constraints. , 2005, Biostatistics.
[34] Yongdai Kim,et al. A Bernstein–von Mises theorem in the nonparametric right-censoring model , 2004, math/0410083.
[35] Brian Neelon,et al. Bayesian Isotonic Regression and Trend Analysis , 2004, Biometrics.
[36] Miguel Á. Carreira-Perpiñán,et al. On the Number of Modes of a Gaussian Mixture , 2003, Scale-Space.
[37] C. Holmes,et al. Generalized monotonic regression using random change points , 2003, Statistics in medicine.
[38] Ronald W. Davis,et al. Replication dynamics of the yeast genome. , 2001, Science.
[39] P. Davies,et al. Local Extremes, Runs, Strings and Multiresolution , 2001 .
[40] T Gasser,et al. The analysis of the EEG , 1996, Statistical methods in medical research.
[41] Audris Mockus,et al. A nonparametric Bayes method for isotonic regression , 1995 .
[42] G. Wahba. Spline Models for Observational Data , 1990 .
[43] Marina Schmid,et al. An Introduction To The Event Related Potential Technique , 2016 .
[44] Karin Rothschild,et al. A Course In Functional Analysis , 2016 .
[45] de R René Jonge,et al. Semiparametric Bernstein-von Mises for the error standard deviation , 2013 .
[46] Van Der Vaart,et al. The Bernstein-Von-Mises theorem under misspecification , 2012 .
[47] J. Ramsay. Estimating smooth monotone functions , 1998 .