Computing Bi-Invariant Pseudo-Metrics on Lie Groups for Consistent Statistics

In computational anatomy, organ’s shapes are often modeled as deformations of a reference shape, i.e., as elements of a Lie group. To analyze the variability of the human anatomy in this framework, we need to perform statistics on Lie groups. A Lie group is a manifold with a consistent group structure. Statistics on Riemannian manifolds have been well studied, but to use the statistical Riemannian framework on Lie groups, one needs to define a Riemannian metric compatible with the group structure: a bi-invariant metric. However, it is known that Lie groups, which are not a direct product of compact and abelian groups, have no bi-invariant metric. However, what about bi-invariant pseudo-metrics? In other words: could we remove the assumption of the positivity of the metric and obtain consistent statistics on Lie groups through the pseudo-Riemannian framework? Our contribution is two-fold. First, we present an algorithm that constructs bi-invariant pseudo-metrics on a given Lie group, in the case of existence. Then, by running the algorithm on commonly-used Lie groups, we show that most of them do not admit any bi-invariant (pseudo-) metric. We thus conclude that the (pseudo-) Riemannian setting is too limited for the definition of consistent statistics on general Lie groups.

[1]  Eckhard Meinrenken,et al.  LIE GROUPS AND LIE ALGEBRAS , 2021, Lie Groups, Lie Algebras, and Cohomology. (MN-34), Volume 34.

[2]  De Graaf,et al.  Lie Algebras: Theory and Algorithms , 2013 .

[3]  W. Kendall Probability, Convexity, and Harmonic Maps with Small Image I: Uniqueness and Fine Existence , 1990 .

[4]  Genshiro Kitagawa,et al.  An algorithm for solving the matrix equation X = FXF T + S , 1977 .

[5]  P. Fletcher Riemannian Median and Its Estimation , 2009 .

[6]  H. Le,et al.  Estimation of Riemannian Barycentres , 2004 .

[7]  Ines Kath,et al.  Metric Lie algebras with maximal isotropic centre , 2002 .

[8]  R. Campoamor-Stursberg Quasi-Classical Lie Algebras and their Contractions , 2008 .

[9]  Eugene M. Luks,et al.  Testing isomorphism of modules , 2008 .

[10]  I. Schur,et al.  Neue Begründung der Theorie der Gruppencharaktere: Sitzungsberichte der Preussischen Akademie der Wissenschaften 1905, Physikalisch-Mathematische Klasse, 406 – 432 , 1973 .

[11]  G Favre,et al.  Symmetric, invariant, non-degenerate bilinear form on a Lie algebra , 1987 .

[12]  Ben Kenwright,et al.  A Beginners Guide to Dual-Quaternions: What They Are, How They Work, and How to Use Them for 3D Character Hierarchies , 2012, WSCG 2012.

[13]  A. Belavin,et al.  Triangle Equations and Simple Lie Algebras , 1998 .

[14]  A. G. Walker,et al.  XIX.—Metrisable Lie Groups and Algebras , 1957 .

[15]  Alberto Medina,et al.  Algèbres de Lie et produit scalaire invariant , 1985 .

[16]  Douglas S. Rand,et al.  On the Identification of a Lie Algebra Given by its Structure Constants , 1988 .

[17]  D'arcy W. Thompson On growth and form i , 1943 .

[18]  S-T. Tsou XI.—On the Construction of Metrisable Lie Algebras * , 1962 .

[19]  V. Arsigny,et al.  Exponential Barycenters of the Canonical Cartan Connection and Invariant Means on Lie Groups , 2013 .

[20]  Ines Kath,et al.  Metric Lie algebras and quadratic extensions , 2003, math/0312243.

[21]  Karl H. Hofmann,et al.  Invariant quadratic forms on finite dimensional lie algebras , 1986, Bulletin of the Australian Mathematical Society.

[22]  M. Bordemann,et al.  NONDEGENERATE INVARIANT BILINEAR FORMS ON NONASSOCIATIVE ALGEBRAS , 1999 .

[23]  V. V. Astrakhantsev Decomposability of metrizable Lie algebras , 1978 .

[24]  M. Émery,et al.  Sur le barycentre d'une probabilité dans une variété , 1991 .

[25]  M. Fréchet Les éléments aléatoires de nature quelconque dans un espace distancié , 1948 .

[26]  J. Milnor Curvatures of left invariant metrics on lie groups , 1976 .

[27]  Minh thanh Duong A new invariant of quadratic lie algebras and quadratic lie superalgebras , 2011 .

[28]  Joachim Hilgert,et al.  Lorentzian cones in real Lie algebras , 1985 .

[29]  Wilfrid S. Kendall,et al.  Riemannian barycentres and geodesic convexity , 1999, Mathematical Proceedings of the Cambridge Philosophical Society.

[30]  Lajos Rónyai,et al.  Computing Levi Decompositions in Lie algebras , 1997, Applicable Algebra in Engineering, Communication and Computing.

[31]  Richard H. Bartels,et al.  Algorithm 432 [C2]: Solution of the matrix equation AX + XB = C [F4] , 1972, Commun. ACM.

[32]  B. Afsari Riemannian Lp center of mass: existence, uniqueness, and convexity , 2011 .

[33]  G. Frobenius,et al.  Ueber lineare Substitutionen und bilineare Formen. , 2022 .

[34]  E. Cartan,et al.  Sur la structure des groupes de transformations finis et continus , 1933 .

[35]  D. W. Rand,et al.  PASCAL programs for identification of Lie algebras: Part 1. Radical — a program to calculate the radical and nil radical of parameter-free and parameter-dependent lie algebras , 1986 .

[36]  N. Reshetikhin,et al.  Quantum Groups , 1993, hep-th/9311069.

[37]  Nicolai Reshetikhin,et al.  Quantum Groups , 1993 .

[38]  Josef Grünwald,et al.  Über duale Zahlen und ihre Anwendung in der Geometrie , 1906 .

[39]  S. Yau,et al.  Lectures on Differential Geometry , 1994 .

[40]  Manuel Ceballos,et al.  Algorithmic method to obtain abelian subalgebras and ideals in Lie algebras , 2012, Int. J. Comput. Math..

[41]  Arjeh M. Cohen,et al.  Computations in finite-dimensional Lie algebras , 1997, Discret. Math. Theor. Comput. Sci..

[42]  D'arcy W. Thompson,et al.  On Growth and Form , 1917, Nature.

[43]  H. Karcher Riemannian center of mass and mollifier smoothing , 1977 .

[44]  Alberto Medina,et al.  Les groupes oscillateurs et leurs reseaux , 1985 .

[45]  Oleksandr Motsak Computation of the central elements and centralizers of sets of elements in non-commutative polynomial algebras , 2006 .

[46]  Alberto Elduque,et al.  Classification of quadratic Lie algebras of low dimension , 2014, 1404.5174.