The role of seabird guano in maintaining North Atlantic summertime productivity.

[1]  A. Tovar‐Sánchez,et al.  The contribution of penguin guano to the Southern Ocean iron pool , 2023, Nature Communications.

[2]  Robert A. Ronconi,et al.  Age-Related Interactions with Wind During Migration Support the Hypothesis of Developmental Learning in a Migrating Long-Lived Seabird , 2022, Frontiers in Marine Science.

[3]  Nicolas Gruber,et al.  Changing Ocean, Marine Ecosystems, and Dependent Communities , 2022, The Ocean and Cryosphere in a Changing Climate.

[4]  C. Doughty,et al.  The sixth R: Revitalizing the natural phosphorus pump. , 2022, The Science of the total environment.

[5]  V. Taillandier,et al.  Influence of atmospheric deposition on biogeochemical cycles in an oligotrophic ocean system , 2021, Biogeosciences.

[6]  David L. Miller,et al.  The summer distribution, habitat associations and abundance of seabirds in the sub-polar frontal zone of the Northwest Atlantic , 2021 .

[7]  Robert A. Ronconi,et al.  Multispecies tracking reveals a major seabird hotspot in the North Atlantic , 2021, Conservation Letters.

[8]  E. Achterberg,et al.  Manganese co-limitation of phytoplankton growth and major nutrient drawdown in the Southern Ocean , 2021, Nature Communications.

[9]  S. De La Peña-Lastra,et al.  Seabird droppings: Effects on a global and local level. , 2021, The Science of the total environment.

[10]  C. Barbraud,et al.  Linking 19th century European settlement to the disruption of a seabird's natural population dynamics. , 2020, Proceedings of the National Academy of Sciences of the United States of America.

[11]  E. Galbraith,et al.  The fecal iron pump: Global impact of animals on the iron stoichiometry of marine sinking particles , 2020, Limnology and oceanography.

[12]  M. Cianciaruso,et al.  Valuing Ecosystem Services Can Help to Save Seabirds. , 2020, Trends in ecology & evolution.

[13]  Thomas A. Clay,et al.  A framework for mapping the distribution of seabirds by integrating tracking, demography and phenology , 2020 .

[14]  P. Boyd,et al.  Assessment of leaching protocols to determine the solubility of trace metals in aerosols. , 2020, Talanta.

[15]  E. Achterberg,et al.  Nutrient regulation of late spring phytoplankton blooms in the midlatitude North Atlantic , 2019, Limnology and Oceanography.

[16]  Rob W. Martin,et al.  Threats to seabirds: A global assessment , 2019, Biological Conservation.

[17]  H. Claustre,et al.  Multi-faceted particle pumps drive carbon sequestration in the ocean , 2019, Nature.

[18]  B. Raymond,et al.  Review: the energetic value of zooplankton and nekton species of the Southern Ocean , 2018, Marine Biology.

[19]  M. MacNeil,et al.  Seabirds enhance coral reef productivity and functioning in the absence of invasive rats , 2018, Nature.

[20]  E. Achterberg,et al.  Influence of Iron, Cobalt, and Vitamin B12 Supply on Phytoplankton Growth in the Tropical East Pacific During the 2015 El Niño , 2018, Geophysical Research Letters.

[21]  C. R. White,et al.  A model to estimate seabird field metabolic rates , 2018, Biology Letters.

[22]  X. Otero,et al.  Seabird colonies as important global drivers in the nitrogen and phosphorus cycles , 2018, Nature Communications.

[23]  Stuart C. Painter,et al.  Iron Biogeochemistry in the High Latitude North Atlantic Ocean , 2018, Scientific Reports.

[24]  K. Arrigo,et al.  Differential effects of nitrate, ammonium, and urea as N sources for microbial communities in the North Pacific Ocean , 2017 .

[25]  E. Achterberg,et al.  Nutrient co-limitation at the boundary of an oceanic gyre , 2017, Nature.

[26]  S. Wing,et al.  Phytoplankton community structure is influenced by seabird guano enrichment in the Southern Ocean , 2017 .

[27]  K. Johnson,et al.  The integral role of iron in ocean biogeochemistry , 2017, Nature.

[28]  S. Wing,et al.  Marine micronutrient vectors: seabirds, marine mammals and fishes egest high concentrations of bioactive metals in the subantarctic island ecosystem , 2017 .

[29]  T. Jickells,et al.  Atmospheric transport of trace elements and nutrients to the oceans , 2016, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[30]  N. Mahowald,et al.  Effects of African dust deposition on phytoplankton in the western tropical Atlantic Ocean off Barbados , 2016 .

[31]  K. A. S. Mislan,et al.  Global patterns of diel vertical migration times and velocities from acoustic data , 2016 .

[32]  Richard C. Dugdale,et al.  Pluses and minuses of ammonium and nitrate uptake and assimilation by phytoplankton and implications for productivity and community composition, with emphasis on nitrogen‐enriched conditions , 2016 .

[33]  Y. Malhi,et al.  Global nutrient transport in a world of giants , 2015, Proceedings of the National Academy of Sciences.

[34]  Adrian P. Martin,et al.  Ocean nutrient pathways associated with the passage of a storm , 2015 .

[35]  Daniel Pauly,et al.  Population Trend of the World’s Monitored Seabirds, 1950-2010 , 2015, PloS one.

[36]  S. Wing,et al.  Seabird guano enhances phytoplankton production in the Southern Ocean , 2015 .

[37]  A. Bowie,et al.  The Biogeochemical Role of Baleen Whales and Krill in Southern Ocean Nutrient Cycling , 2014, PloS one.

[38]  Michael W. Lomas,et al.  Impact of ocean phytoplankton diversity on phosphate uptake , 2014, Proceedings of the National Academy of Sciences.

[39]  R. Frew,et al.  Seabirds and marine mammals redistribute bioavailable iron in the Southern Ocean , 2014 .

[40]  P. I. Miller,et al.  Enhancement of primary production in the North Atlantic outside of the spring bloom, identified by remote sensing of ocean colour and temperature , 2014 .

[41]  P. Boyd,et al.  Surface-water iron supplies in the Southern Ocean sustained by deep winter mixing , 2014 .

[42]  J. Resing,et al.  Pacific Ocean aerosols: Deposition and solubility of iron, aluminum, and other trace elements , 2013 .

[43]  Stuart C. Painter,et al.  An assessment of the vertical diffusive flux of iron and other nutrients to the surface waters of the subpolar North Atlantic Ocean , 2013 .

[44]  K. Arrigo,et al.  Processes and patterns of oceanic nutrient limitation , 2013 .

[45]  R. Žydelis,et al.  The incidental catch of seabirds in gillnet fisheries: A global review , 2013 .

[46]  E. Achterberg,et al.  Spatial and temporal development of phytoplankton iron stress in relation to bloom dynamics in the high‐latitude North Atlantic Ocean , 2013 .

[47]  M. Behrenfeld,et al.  Photophysiological expressions of iron stress in phytoplankton. , 2013, Annual review of marine science.

[48]  S. Wanless,et al.  The global distribution of ammonia emissions from seabird colonies , 2012 .

[49]  Adrian P. Martin,et al.  Turbulent nutrient fluxes in the Iceland Basin , 2012 .

[50]  Alison J. Stattersfield,et al.  Seabird conservation status, threats and priority actions: a global assessment , 2012, Bird Conservation International.

[51]  O. Aumont,et al.  A global compilation of dissolved iron measurements: focus on distributions and processes in the Southern Ocean , 2011 .

[52]  J. Croxall,et al.  Global seabird bycatch in longline fisheries , 2011 .

[53]  Richard Sanders,et al.  Export and mesopelagic particle flux during a North Atlantic spring diatom bloom , 2011 .

[54]  P. Hambäck,et al.  Effects of seabird nesting colonies on algae and aquatic invertebrates in coastal waters , 2010 .

[55]  J. McCarthy,et al.  The Whale Pump: Marine Mammals Enhance Primary Productivity in a Coastal Basin , 2010, PloS one.

[56]  W. Buttemer,et al.  Chemical composition and tissue energy density of the cuttlefish (Sepia apama) and its assimilation efficiency by Diomedea albatrosses , 2010, Journal of Comparative Physiology B.

[57]  E. Achterberg,et al.  Iron limitation of the postbloom phytoplankton communities in the Iceland Basin , 2009 .

[58]  T. Platt,et al.  Basin-Scale Coherence in Phenology of Shrimps and Phytoplankton in the North Atlantic Ocean , 2009, Science.

[59]  R. Geider,et al.  Interpretation of fast repetition rate (FRR) fluorescence: signatures of phytoplankton community structure versus physiological state , 2009 .

[60]  R. Furness,et al.  An effective method for trapping scavenging seabirds at sea , 2008 .

[61]  K. R. Arrigo,et al.  Impacts of Atmospheric Anthropogenic Nitrogen on the Open Ocean , 2008, Science.

[62]  D. Beauchamp,et al.  Energy Density of Patagonian Aquatic Organisms and Empirical Predictions Based on Water Content , 2007 .

[63]  M. Mallory,et al.  Prebasic molt initiation and progress in northern fulmars of the High Arctic: do molt and breeding overlap? , 2007, Polar Biology.

[64]  Vasiliki S. Karpouzi,et al.  Modelling and mapping resource overlap between seabirds and fisheries on a global scale: a preliminary assessment , 2007 .

[65]  E. Boyle,et al.  Mesoscale Iron Enrichment Experiments 1993-2005: Synthesis and Future Directions , 2007, Science.

[66]  E. Achterberg,et al.  Iron limits primary productivity during spring bloom development in the central North Atlantic , 2006 .

[67]  John A. Harrison,et al.  Escalating Worldwide use of Urea – A Global Change Contributing to Coastal Eutrophication , 2006 .

[68]  J. Ellis Marine Birds on Land: A Review of Plant Biomass, Species Richness, and Community Composition in Seabird Colonies , 2005, Plant Ecology.

[69]  P. Glibert,et al.  Urea analysis in coastal waters: comparison of enzymatic and direct methods , 2005 .

[70]  M. Saito,et al.  Production of cobalt binding ligands in a Synechococcus feature at the Costa Rica upwelling dome , 2005 .

[71]  Daniele Iudicone,et al.  Mixed layer depth over the global ocean: An examination of profile data and a profile-based climatology , 2004 .

[72]  B. Quéguiner,et al.  Availability of iron and major nutrients for phytoplankton in the northeast Atlantic Ocean , 2004 .

[73]  S. Wanless,et al.  Modelling the spatial distribution of ammonia emissions from seabirds in the UK. , 2004, Environmental pollution.

[74]  M. Brooke The food consumption of the world's seabirds. , 2004, Proceedings. Biological sciences.

[75]  W. K. Johnson,et al.  Influence of zinc and iron enrichments on phytoplankton growth in the northeastern subarctic Pacific , 2003 .

[76]  S. Interlandi,et al.  LIMITING RESOURCES AND THE REGULATION OF DIVERSITY IN PHYTOPLANKTON COMMUNITIES , 2001 .

[77]  S. Doney,et al.  Iron supply and demand in the upper ocean , 2000 .

[78]  R. Sherrell,et al.  Techniques for determination of trace metals in small samples of size-fractionated particulate matter: phytoplankton metals off central California , 1999 .

[79]  Roger Kerouel,et al.  A simple and precise method for measuring ammonium in marine and freshwater ecosystems , 1999 .

[80]  H. Ellegren,et al.  A simple and universal method for molecular sexing of non-ratite birds , 1999 .

[81]  P. Falkowski,et al.  Biogeochemical Controls and Feedbacks on Ocean Primary Production , 1998, Science.

[82]  T. Rossby The North Atlantic Current and surrounding waters: At the crossroads , 1996 .

[83]  K. Nagy FIELD METABOLIC RATE AND FOOD REQUIREMENT SCALING IN MAMMALS AND BIRDS , 1987 .

[84]  M. Clarke,et al.  Calorific Values and Elemental Analysis of Eleven Species of Oceanic Squids (Mollusca:Cephalopoda) , 1985, Journal of the Marine Biological Association of the United Kingdom.

[85]  Ann E. Gargett,et al.  Time and space scales of vertical mixing and advection of phytoplankton in the upper ocean , 1983 .

[86]  R. Rudnick,et al.  Composition of the Continental Crust , 2014 .

[87]  Nicolas Gruber,et al.  The Marine Nitrogen Cycle: Overview and Challenges , 2008 .

[88]  S. J. Tanner,et al.  Iron, primary production and carbon-nitrogen flux studies during the JGOFS North Atlantic bloom experiment , 1993 .

[89]  M. Sieracki,et al.  Plankton community response to sequential silicate and nitrate depletion during the 1989 North Atlantic spring bloom , 1993 .

[90]  S. Jackson Assimilation efficiencies of White-chinned petrels (Procellaria aequinoctialis) fed differnt prey , 1986 .

[91]  G. E. Hutchinson,et al.  Survey of existing knowledge of biogeochemistry. 3, The biogeochemistry of vertebrate excretion. Bulletin of the AMNH ; v. 96 , 1950 .