A correlation of ΔKth-value with the exponent, m, in the equation of fatigue crack growth for various steels

Literature (mainly in Japan) relating to fatigue-crack-growth-data at R=0 in an air environment for a wide range of steels is reviewed with particular attention to the threshold stress intensity, ΔKth. The collected data are analyzed in terms of the exponent, m(the slope of the linear portion of the log(da/dN)-logΔD relationship) by taking account of microstructure, material strength, fracture toughness and specimen thickness. The mean rate of fatigue crack growth for ductile steels in the range from the intermediate growth rate to threshold level and the relevant threshold values at R=0, ΔKth0, can be represented asda/dN = 1.700 × 10-4(ΔK103.6)m - 10-6andΔKth0 = 103.6(5.88 × 10-3)1/m,where (da/dN) and ΔK are measured by the units of mm/cycle and kgf/mm3/2, respectively. Contrary to this, in the case of extremely brittle steels with KIC-value below 200 kgf/mm3/2 (the fracture occurs by the intergranular separation), the relationships are given byda/dN = 2.893 × 10-5(ΔK/49.94)m - 2.5 × 10-7andΔKth0 = 49.94(8.64 × 10-3)1/m.RésuméLa littérature, principalement japonaise, relative aux données sur la propagation des fissures de fatigue pour R=0 dans un environnement d'air et pour une large catégorie d'aciers fait l'objet d'une revue avec une attention particulière pour l'intensité de contrainte de seuil, Kth. Les données collectées sont analysées en terme de l'éxposant m (qui représente la pente de la portion linéaire de la relation log(da/dN)-log ΔK, en tenant compte de la microstructure, de la résistance du matériau, de la ténacité à la rupture et de l'épaisseur de l'éprouvette. La vitesse moyenne de propagation d'une fissure de fatigue dans le cas des aciers ductiles dans la fourchette entre la vitesse intermédiaire de fissuration et le niveau critique, et les valeurs correspondantes de seuil à R=0, ΔKth0 peuvent être représentées par la relation:da/dN = 1.700 × 10-4(ΔK103.6)m - 10-6etΔKth0 = 103.6(5.88 × 10-3)1/m,où (da/dN) et ΔK sont mesurés en unités de mm/cycle et en kgf/mm3/2 respectivement. En contraste, dans le cas d'aciers extrèmement fragiles avec des valeurs KIC en dessous de 200 kgf/mm3/2 (la rupture se produit par une séparation intergranulaire), ces relations sont données par:da/dN = 2.893 × 10-5(ΔK/49.94)m - 2.5 × 10-7etΔKth0 = 49.94(8.64 × 10-3)1/m.

[1]  S. Rolfe,et al.  Fatigue-crack propagation in high yield-strength steels , 1971 .

[2]  T. Araki,et al.  Fatigue Behaviour of Metastable and Stable Austenitic Steels , 1978 .

[3]  L. E. Culver,et al.  Growth of fatigue cracks in steels , 1976 .

[4]  C. E. Richards,et al.  The influence of stress intensity and microstructure on fatigue crack propagation in ferritic materials , 1972 .

[5]  K. Tanaka,et al.  A tentative explanation for two parameters, C and m, in Paris equation of fatigue crack growth , 1977 .

[6]  W. Elber The Significance of Fatigue Crack Closure , 1971 .

[7]  R. J. Cooke,et al.  Some Considerations of the Influence of Sub-Critical Cleavage Growth during Fatigue-Crack Propagation in Steels , 1975 .

[8]  M. Fine,et al.  Fatigue crack propagation in 4140 steel , 1975 .

[9]  Transient effects in fatigue crack propagation , 1976 .

[10]  R. J. Cooke,et al.  The slow fatigue crack growth and threshold behaviour of a medium carbon alloy steel in air and vacuum , 1975 .

[11]  P. C. Paris,et al.  A Critical Analysis of Crack Propagation Laws , 1963 .

[12]  M. Klesnil,et al.  Effect of stress cycle asymmetry on fatigue crack growth , 1972 .

[13]  Robert O. Ritchie,et al.  Influence of microstructure on near-threshold fatigue-crack propagation in ultra-high strength steel , 1977 .

[14]  T. Yokobori,et al.  Dislocation dynamics theory for fatigue crack growth , 1975 .

[15]  R. J. Cooke,et al.  Slow fatigue crack propagation in pearlitic steels , 1974 .

[16]  J. F. Knott,et al.  Mechanisms of fatigue crack growth in low alloy steel , 1973 .

[17]  Volker Weiss,et al.  A note on the threshold condition for fatigue crack propagation , 1974 .

[18]  T. Mager,et al.  Fracture mechanics for heavy section steel nuclear pressure vessels , 1972 .

[19]  T. Araki,et al.  Fatigue Properties of Carbon Steels (Containing 0.13-0.41%C) with Various Heat Treated Structures , 1978 .

[20]  P. E. Irving,et al.  Prediction of fatigue crack growth rates: theory, mechanisms, and experimental results , 1977 .

[21]  J. Bailon,et al.  The dependence of the threshold stress intensity factor on the cyclic stress ratio in fatigue of ferritic-pearlitic steels , 1975 .