From Kolmogorov’s theorem on empirical distribution to number theory
暂无分享,去创建一个
[1] R. Baker. DIVISORS (Cambridge Tracts in Mathematics 90) , 1989 .
[2] K. Chung,et al. Limit Distributions for Sums of Independent Random Variables , 1955 .
[3] Sharp probability estimates for generalized Smirnov statistics , 2006, math/0609224.
[4] K. Ford. The distribution of integers with a divisor in a given interval , 2004, math/0401223.
[5] R. Pyke. THE SUPREMUM AND INFIMUM OF THE POISSON PROCESS , 1959 .
[6] G. Tenenbaum. Sur la probabilité qu'un entier possède un diviseur dans un intervalle donné , 1984 .
[7] H. A. Lauwerier,et al. The asymptotic expansion of the statistical distribution of N. V. Smirnov , 1962 .
[8] A. Besicovitch,et al. On the density of certain sequences of integers , 1935 .
[9] P. Révész,et al. Strong approximations in probability and statistics , 1981 .
[10] A. Rényi. On the density of certain sequences of integers. , 1955 .
[11] Sharp probability estimates for random walks with barriers , 2006, math/0610450.
[12] J. Wellner,et al. Empirical Processes with Applications to Statistics , 2009 .
[13] P. Major,et al. An approximation of partial sums of independent RV'-s, and the sample DF. I , 1975 .
[14] K. Ford. INTEGERS WITH A DIVISOR IN (y; 2y) , 2006, math/0607473.
[15] P. Rousseeuw,et al. Wiley Series in Probability and Mathematical Statistics , 2005 .
[16] A. Rényi. On the theory of order statistics , 1953 .
[17] P. Erdös. Note on Sequences of Integers No One of Which is Divisible By Any Other , 1935 .
[18] O. Perron. Über Bruwiersche Reihen , 1939 .
[19] J. Wellner,et al. EMPIRICAL PROCESSES WITH APPLICATIONS TO STATISTICS (Wiley Series in Probability and Mathematical Statistics) , 1987 .
[20] P. Erdös. A generalization of a theorem of besicovitch , 1936 .
[21] B. Gnedenko,et al. Limit Distributions for Sums of Independent Random Variables , 1955 .
[22] P. Elliott. Probabilistic number theory , 1979 .
[23] H. Daniels. The statistical theory of the strength of bundles of threads. I , 1945, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.
[24] W. Philipp. Invariance Principles for Independent and Weakly Dependent Random Variables , 1986 .