THE YARKOVSKY AND YORP EFFECTS: Implications for Asteroid Dynamics

The Yarkovsky and YORP (Yarkovsky-O’Keefe-Radzievskii-Paddack) effects are thermal radiation forces and torques that cause small objects to undergo semimajor axis drift and spin vector modifications, respectively, as a function of their spin, orbit, and material properties. These mechanisms help to (a) deliver asteroids (and meteoroids) with diameter D < 40 km from their source locations in the main belt to chaotic resonance zones capable of transporting this material to Earth-crossing orbits; (b) disperse asteroid families, with drifting bodies jumping or becoming trapped in mean-motion and secular resonances within the main belt; (c) modify the rotation rates and obliquities of D < 40 km asteroids; and (d ) allow asteroids to enter into spin-orbit resonances, which affect the evolution of their spin vectors and feedback into the Yarkovsky-driven semimajor axis evolution. Accordingly, we suggest that nongravitational forces should now be considered as important as collisions and gravitational perturbations to our overall understanding of asteroid evolution.

[1]  D. Olsson-Steel The origin of the sporadic meteoroid component , 1986 .

[2]  Harold F. Levison,et al.  Dynamical Lifetimes of Objects Injected into Asteroid Belt Resonances , 1997 .

[3]  M. Bailey,et al.  Vesta fragments from v6 and 3:1 resonances: Implications for V‐type near‐Earth asteroids and howardite, eucrite and diogenite meteorites , 1997 .

[4]  Paolo Tanga,et al.  The Velocity–Size Relationship for Members of Asteroid Families and Implications for the Physics of Catastrophic Collisions , 1999 .

[5]  Andrea Milani,et al.  Asteroid Proper Elements and the Dynamical Structure of the Asteroid Main Belt , 1994 .

[6]  J. Wisdom,et al.  Chaotic behavior and the origin of the 3/1 Kirkwood gap , 1983 .

[7]  M. Nolan,et al.  Velocity Distributions among Colliding Asteroids , 1994 .

[8]  Alessandro Morbidelli,et al.  The Population of Mars-Crossers: Classification and Dynamical Evolution , 2000 .

[9]  David Vokrouhlický,et al.  YORP-induced long-term evolution of the spin state of small asteroids and meteoroids , 2002 .

[10]  Andrea Milani,et al.  The Determination of Asteroid Proper Elements , 2002 .

[11]  D. Rubincam,et al.  Radiative Spin-up and Spin-down of Small Asteroids , 2000 .

[12]  Alain Doressoundiram,et al.  Fugitives from the Eos Family: First Spectroscopic Confirmation☆ , 2000 .

[13]  W. Hartmann,et al.  Meteorite Delivery via Yarkovsky Orbital Drift , 1998 .

[14]  William K. Hartmann,et al.  Reviewing the Yarkovsky effect: New light on the delivery of stone and iron meteorites from the asteroid belt , 1999 .

[15]  D. Vokrouhlický,et al.  Detectability of YORP rotational slowing of asteroid 25143 Itokawa , 2004 .

[16]  D. Vokrouhlický,et al.  On the observability of radiation forces acting on near-Earth asteroids , 2001 .

[17]  Paolo Tanga,et al.  On the Size Distribution of Asteroid Families: The Role of Geometry , 1999 .

[18]  Robert Jedicke,et al.  The fossilized size distribution of the main asteroid belt , 2003 .

[19]  D. Rubincam,et al.  LAGEOS orbit decay due to infrared radiation from Earth , 1987 .

[20]  D. Vokrouhlický,et al.  Yarkovsky detection opportunities. II. Binary systems , 2005 .

[21]  Richard P. Binzel,et al.  Asteroid collisional history - Effects on sizes and spins , 1989 .

[22]  Richard P. Binzel,et al.  Bias-corrected population, size distribution, and impact hazard for the near-Earth objects , 2004 .

[23]  Aldo dell'Oro,et al.  A Search for the Collisional Parent Bodies of Large NEAs , 2002 .

[24]  Harold F. Levison,et al.  The recent breakup of an asteroid in the main-belt region , 2002, Nature.

[25]  Alessandro Morbidelli,et al.  The Yarkovsky-driven origin of near-Earth asteroids , 2003 .

[26]  Randolph L. Kirk,et al.  The rayed crater Zunil and interpretations of small impact craters on Mars , 2005 .

[27]  D. Vokrouhlický,et al.  Yarkovsky / YORP chronology of young asteroid families , 2022 .

[28]  W. Bottke,et al.  Detection of the Yarkovsky effect for main-belt asteroids , 2004 .

[29]  Joseph A. Burns,et al.  Orbital evolution of the Gefion and Adeona asteroid families: close encounters with massive asteroids and the Yarkovsky effect , 2003 .

[30]  Richard P. Binzel,et al.  Spin vectors in the Koronis family: comprehensive results from two independent analyses of 213 rotation lightcurves , 2003 .

[31]  Giovanni B. Valsecchi,et al.  Asteroids falling into the Sun , 1994, Nature.

[32]  P. Farinella,et al.  The Injection of Asteroid Fragments into Resonances , 1993 .

[33]  D. Rubincam Yarkovsky Thermal Drag on LAGEOS , 1988 .

[34]  D. Vokrouhlický,et al.  Yarkovsky origin of the unstable asteroids in the 2/1 mean motion resonance with Jupiter , 2005 .

[35]  P. Farinella,et al.  Efficient delivery of meteorites to the Earth from a wide range of asteroid parent bodies , 2000, Nature.

[36]  D. Rubincam Yarkovsky thermal drag on small asteroids and Mars‐Earth delivery , 1998 .

[37]  J. Veverka,et al.  The generation and use of numerical shape models for irregular Solar System objects , 1993 .

[38]  Jedicke,et al.  Understanding the distribution of near-earth asteroids , 1999, Science.

[39]  D. Olsson-Steel The dispersal of the Geminid meteoroid stream by radiative effects , 1987 .

[40]  Richard P. Binzel,et al.  Observed spectral properties of near-Earth objects: results for population distribution, source regions, and space weathering processes , 2004 .

[41]  Morbidelli,et al.  Origin of multikilometer earth- and mars-crossing asteroids: A quantitative simulation , 1998, Science.

[42]  V. V. Radzievskii A mechanism for the disintegration of asteroids and meteorites , 1952 .

[43]  H. Melosh,et al.  Gravitational Aggregates: Evidence and Evolution , 2002 .

[44]  R. Jedicke,et al.  The origin and evolution of stony meteorites , 2004, Proceedings of the International Astronomical Union.

[45]  D. Vokrouhlický,et al.  The Yarkovsky Seasonal Effect on Asteroidal Fragments: A Nonlinearized Theory for the Plane-parallel Case , 1998 .

[46]  P. Tanga,et al.  Collisions and Gravitational Reaccumulation: Forming Asteroid Families and Satellites , 2001, Science.

[47]  George Beekman,et al.  I. O. Yarkovsky and the Discovery of ‘His’ Effect , 2006 .

[48]  D. Vokrouhlický,et al.  The Yarkovsky thermal force on small asteroids and their fragments - Choosing the right albedo , 2001 .

[49]  Joseph A. Burns,et al.  Effects of thermal radiation on the dynamics of binary NEAs , 2004 .

[50]  Robert Jedicke,et al.  Linking the collisional history of the main asteroid belt to its dynamical excitation and depletion , 2005 .

[51]  S. J. Ostrob,et al.  Yarkovsky detection opportunities . I . Solitary asteroids , 2005 .

[52]  David Vokrouhlický,et al.  The vector alignments of asteroid spins by thermal torques , 2003, Nature.

[53]  Petr Pravec,et al.  Fast and Slow Rotation of Asteroids , 2000 .

[54]  Joseph A. Burns,et al.  Dynamical Evolution of Main Belt Meteoroids: Numerical Simulations Incorporating Planetary Perturbations and Yarkovsky Thermal Forces , 2000 .

[55]  Andrea Milani,et al.  Yarkovsky Effect on Small Near-Earth Asteroids: Mathematical Formulation and Examples , 2000 .

[56]  Richard P. Binzel,et al.  Asteroid rotation rates - Distributions and statistics , 1989 .

[57]  Vokrouhlick,et al.  Semimajor axis mobility of asteroidal fragments , 1999, Science.

[58]  D. Vokrouhlický,et al.  Physical properties of asteroid dust bands and their sources , 2006 .

[59]  Alain Doressoundiram,et al.  Spectroscopic Properties of Asteroid Families , 2002 .

[60]  P. Farinella,et al.  THE DANGEROUS BORDER OF THE 5:2 MEAN MOTION RESONANCE , 1997 .

[61]  Alessandro Morbidelli,et al.  Orbital and temporal distributions of meteorites originating in the asteroid belt , 1998 .

[62]  R. Jedicke,et al.  Debiased Orbital and Absolute Magnitude Distribution of the Near-Earth Objects , 2002 .

[63]  Karri Muinonen,et al.  Introducing the Gaussian shape hypothesis for asteroids and comets , 1998 .

[64]  Richard J. Greenberg,et al.  Numerical Evaluation of the General Yarkovsky Effect: Effects on Eccentricity and Longitude of Periapse , 2002 .

[65]  W. Benz,et al.  Catastrophic Disruptions Revisited , 1999 .

[66]  Alberto Cellino,et al.  Asteroid families: evidence of ageing of the proper elements , 2004 .

[67]  S. Paddack,et al.  Rotational bursting of small celestial bodies: Effects of radiation pressure , 1969 .

[68]  Andrea Milani,et al.  An Asteroid on the Brink , 1995 .

[69]  S. Slivan,et al.  Spin vector alignment of Koronis family asteroids , 2002, Nature.

[70]  D. Rowlands,et al.  Is asteroid 951 Gaspra in a resonant obliquity state with its spin increasing due to YORP , 2002 .

[71]  A. Dobrovolskis,et al.  INERTIA OF ANY POLYHEDRON , 1996 .

[72]  G. Wetherill Steady state populations of Apollo-Amor objects , 1979 .

[73]  Alessandro Morbidelli,et al.  The Flora Family: A Case of the Dynamically Dispersed Collisional Swarm? , 2002 .

[74]  D. Rubincam,et al.  Asteroid orbit evolution due to thermal drag , 1995 .

[75]  O. Eugster Cosmic-ray Exposure Ages of Meteorites and Lunar Rocks and Their Significance , 2003 .

[76]  A. Morbidelli,et al.  Numerous Weak Resonances Drive Asteroids toward Terrestrial Planets Orbits , 1999 .

[77]  Alberto Cellino,et al.  Reconstructing the Original Ejection Velocity Fields of Asteroid Families , 1996 .

[78]  V. Slabinski Solar radiation torque on meteoroids: complications for the Yarkovsky effect from spin axis precession. , 1977 .

[79]  E. Skoglöv Spin vector evolution for inner solar system asteroids , 1998 .

[80]  P. Farinella,et al.  The Yarkovsky Seasonal Effect on Asteroidal Fragments: A Nonlinearized Theory for Spherical Bodies , 1999 .

[81]  D. Vokrouhlický,et al.  Dynamical Spreading of Asteroid Families by the Yarkovsky Effect , 2001, Science.

[82]  Fred L. Whipple,et al.  A comet model. I. The acceleration of Comet Encke , 1950 .

[83]  D. Rubincam,et al.  Drag on the LAGEOS satellite , 1990 .

[84]  Richard J. Greenberg,et al.  Numerical Evaluation of the General Yarkovsky Effect: Effects on Semimajor Axis , 2001 .

[85]  Paolo Farinella,et al.  Yarkovsky-Driven Leakage of Koronis Family Members. I. The Case of 2953 Vysheslavia , 1999 .

[86]  A. McEwen,et al.  The Phanerozoic Impact Cratering Rate: Evidence from the Farside of the Moon , 1997 .

[87]  D. Vokrouhlický,et al.  The YORP effect with finite thermal conductivity , 2004 .

[88]  D. Vokrouhlický Diurnal Yarkovsky effect as a source of mobility of meter-sized asteroidal fragments. I. Linear theory , 1998 .

[89]  Jean-Luc Margot,et al.  Direct Detection of the Yarkovsky Effect by Radar Ranging to Asteroid 6489 Golevka , 2003, Science.

[90]  C. Peterson A source mechanism for meteorites controlled by the Yarkovsky effect , 1976 .

[91]  D. Vokrouhlický DIURNAL YARKOVSKY EFFECT AS A SOURCE OF MOBILITY OF METER-SIZED ASTEROIDALFRAGMENTS : II. NON-SPHERICITY EFFECTS , 1998 .

[92]  R. Gomes,et al.  Asteroid fragments in Earth-crossing orbits , 1995 .

[93]  Harold F. Levison,et al.  Recent Origin of the Solar System Dust Bands , 2003 .

[94]  J. Burns,et al.  Radiation forces on small particles in the solar system , 1979 .

[95]  S. Paddack,et al.  Rotational bursting of interplanetary dust particles , 1975 .

[96]  K. Tsiganis,et al.  Short-lived asteroids in the 7/3 Kirkwood gap and their relationship to the Koronis and Eos families , 2003 .

[97]  A. La Spina,et al.  Retrograde spins of near-Earth asteroids from the Yarkovsky effect , 2004, Nature.