A Study on Illumination Normalization Method based on Bilateral Filter for Illumination Invariant Face Recognition

Cast shadow caused by an illumination condition can produce troublesome effects for face recognition system using reflectance image. Consequently, we need to separate cast shadow area from feature area for improvement of recognition accuracy. A Bilateral filter smooths image while preserving edges, by means of a nonlinear combination of nearby pixel values. Processing such characteristics, this method is suited to our purpose in illumination estimation process based on Retinex. Therefore, in this paper, we propose a new illumination normalization method based on the Bilateral filter in face images. The proposed method produces a reflectance image that is preserved relatively exact cast shadow area, because coefficient of filter is designed to multiply proximity and discontinuity of pixels in input image. Performance of our method is measured by a recognition accuracy of principle component analysis(PCA) and evaluated to compare with other conventional illumination normalization methods.