In-vitro evaluation of Mg-4.0Zn-0.2Ca alloy for biomedical application

[1]  Baoping Zhang,et al.  Preparation and characterization of a new biomedical Mg–Zn–Ca alloy , 2012 .

[2]  P. Chu,et al.  In vitro studies of biomedical magnesium alloys in a simulated physiological environment: a review. , 2011, Acta biomaterialia.

[3]  Frank Witte,et al.  The history of biodegradable magnesium implants: a review. , 2010, Acta biomaterialia.

[4]  Yang Song,et al.  Research on an Mg-Zn alloy as a degradable biomaterial. , 2010, Acta biomaterialia.

[5]  Yufeng Zheng,et al.  The development of binary Mg-Ca alloys for use as biodegradable materials within bone. , 2008, Biomaterials.

[6]  Jia-cheng Gao,et al.  Hemolysis effect and calcium-phosphate precipitation of heat-organic film treated magnesium , 2006 .

[7]  Frank Witte,et al.  In vitro and in vivo corrosion measurements of magnesium alloys. , 2006, Biomaterials.

[8]  Alexis M Pietak,et al.  Magnesium and its alloys as orthopedic biomaterials: a review. , 2006, Biomaterials.

[9]  British Standard,et al.  Biological evaluation of medical devices , 2006 .

[10]  Fu-hui Wang,et al.  Electrochemical behavior of anodized Mg alloy AZ91D in chloride containing aqueous solution , 2005 .

[11]  H. Haferkamp,et al.  In vivo corrosion of four magnesium alloys and the associated bone response. , 2005, Biomaterials.

[12]  C. R. Howlett,et al.  The Effect of Magnesium Ions on Bone Bonding to Hydroxyapatite Coating on Titanium Alloy Implants , 2003 .

[13]  A. Inoue,et al.  Microstructure and mechanical properties of Mg–Zn–Si-based alloys , 2003 .

[14]  A Haverich,et al.  Left main coronary artery fistula exiting into the right atrium , 2003, Heart.

[15]  K. Maruyama,et al.  The activity of non-basal slip systems and dynamic recovery at room temperature in fine-grained AZ31B magnesium alloys , 2003 .

[16]  J. Vormann Magnesium: nutrition and metabolism. , 2003, Molecular aspects of medicine.

[17]  C. R. Howlett,et al.  Mechanisms of magnesium-stimulated adhesion of osteoblastic cells to commonly used orthopaedic implants. , 2002, Journal of biomedical materials research.

[18]  A. Hartwig,et al.  Role of magnesium in genomic stability. , 2001, Mutation research.

[19]  A. M. Irisarri,et al.  Effect of microstructure on fatigue behaviour of cast Al–7Si–Mg alloy , 2001 .

[20]  N. Pébère,et al.  The corrosion of pure magnesium in aerated and deaerated sodium sulphate solutions , 2001 .

[21]  T. Aizawa,et al.  Precipitation of magnesium apatite on pure magnesium surface during immersing in Hank's solution , 2001 .

[22]  Akitada Nakamura,et al.  Simultaneus development of MHW guidelines for biological evaluation of medical devices and ISO 10993-Report of 10 years activity of the Standardization Committee of JSBM , 1999 .

[23]  J. Voegel,et al.  Influence of magnesium substitution on a collagen-apatite biomaterial on the production of a calcifying matrix by human osteoblasts. , 1998, Journal of biomedical materials research.

[24]  G. Song,et al.  The anodic dissolution of magnesium in chloride and sulphate solutions , 1997 .

[25]  T. Ericsson The temperature and concentration dependence of the stacking fault energy in the Co-Ni system , 1966 .

[26]  E. Mcbride,et al.  ABSORBABLE METAL IN BONE SURGERY: A FURTHER REPORT ON THE USE OF MAGNESIUM ALLOYS , 1938 .