Sharp thresholds for the phase transition between primitive recursive and Ackermannian Ramsey numbers

We compute the sharp thresholds on g at which g-large and g-regressive Ramsey numbers cease to be primitive recursive and become Ackermannian. We also identify the threshold below which g-regressive colorings have usual Ramsey numbers, that is, admit homogeneous, rather than just min-homogeneous sets.

[1]  K. Gödel Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I , 1931 .

[2]  K. Gödel Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I , 1931 .

[3]  C. Yates Recursive Functions , 1970, Nature.

[4]  Frank Plumpton Ramsey,et al.  On a Problem of Formal Logic , 1930 .

[5]  Paul Erdös,et al.  Some Bounds for the Ramsey-Paris-Harrington Numbers , 1981, J. Comb. Theory, Ser. A.

[6]  Jussi KETONENt,et al.  Rapidly growing Ramsey functions , 1981 .

[7]  H. L. Abbott A Note on Ramsey's Theorem , 1972, Canadian Mathematical Bulletin.

[8]  Andreas Weiermann,et al.  A CLASSIFICATION OF RAPIDLY GROWING RAMSEY FUNCTIONS , 1976 .

[9]  P. Erdös,et al.  Combinatorial Theorems on Classifications of Subsets of a Given Set , 1952 .

[10]  Kenneth McAloon,et al.  On Gödel incompleteness and finite combinatorics , 1987, Ann. Pure Appl. Log..

[11]  Hans Jürgen Prömel,et al.  Fast growing functions based on Ramsey theorems , 1991, Discret. Math..

[12]  Cristian S. Calude Theories of computational complexity , 1988 .

[13]  J. Paris A Mathematical Incompleteness in Peano Arithmetic , 1977 .

[14]  Jeff B. Paris,et al.  Some independence results for Peano arithmetic , 1978, Journal of Symbolic Logic.

[15]  Hanno Lefmann,et al.  On Canonical Ramsey Numbers for Coloring Three-Element Sets , 1993 .

[16]  Peter Floodstrand Blanchard On Regressive Ramsey Numbers , 2002, J. Comb. Theory, Ser. A.

[17]  Ramsey Theory,et al.  Ramsey Theory , 2020, Set Theory and Foundations of Mathematics: An Introduction to Mathematical Logic.

[18]  Saharon Shelah,et al.  Regressive Ramsey Numbers Are Ackermannian , 1998, J. Comb. Theory, Ser. A.