Balanced Truncation Model Reduction of Large-Scale Dense Systems on Parallel Computers

Model reduction is an area of fundamental importance in many modeling and control applications. In this paper we analyze the use of parallel computing in model reduction methods based on balanced truncation of large-scale dense systems. The methods require the computation of the Gramians of a linear-time invariant system. Using a sign function-based solver for computing full-rank factors of the Gramians yields some favorable computational aspects in the subsequent computation of the reduced-order model, particularly for non-minimal systems. As sign function-based computations only require efficient implementations of basic linear algebra operations readily available, e.g., in the BLAS, LAPACK, and ScaLAPACK, good performance of the resulting algorithms on parallel computers is to be expected. Our experimental results on a PC cluster show the performance and scalability of the parallel implementation.

[1]  Robert A. van de Geijn,et al.  Parallelizing the QR Algorithm for the Unsymmetric Algebraic Eigenvalue Problem: Myths and Reality , 1996, SIAM J. Sci. Comput..

[2]  James Demmel,et al.  Design of a Parallel Nonsymmetric Eigenroutine Toolbox, Part I , 1993, PPSC.

[3]  Enrique S. Quintana-Ortí,et al.  Parallel Distributed Solvers for Large Stable Generalized Lyapunov Equations , 1999, Parallel Process. Lett..

[4]  Z. Drmač Accurate Computation of the Product-Induced Singular Value Decomposition with Applications , 1998 .

[5]  Numerical realization of the balanced reduction of a control problem , 1996 .

[6]  J. D. Roberts,et al.  Linear model reduction and solution of the algebraic Riccati equation by use of the sign function , 1980 .

[7]  Jesse L. Barlow,et al.  More Accurate Bidiagonal Reduction for Computing the Singular Value Decomposition , 2001, SIAM J. Matrix Anal. Appl..

[8]  B. Moore Principal component analysis in linear systems: Controllability, observability, and model reduction , 1981 .

[9]  Vladimir B. Larin,et al.  Construction of square root factor for solution of the Lyapunov matrix equation , 1993 .

[10]  I. Postlethwaite,et al.  Truncated balanced realization of a stable non-minimal state-space system , 1987 .

[11]  B. Wie,et al.  Approach to large space structure control system design using traditional tools , 1990 .

[12]  S. Hammarling Numerical Solution of the Stable, Non-negative Definite Lyapunov Equation , 1982 .

[13]  Jack J. Dongarra,et al.  Implementation of some concurrent algorithms for matrix factorization , 1986, Parallel Comput..

[14]  M. Safonov,et al.  A Schur method for balanced-truncation model reduction , 1989 .

[15]  Adam W. Bojanczyk,et al.  Periodic Schur decomposition: algorithms and applications , 1992, Optics & Photonics.

[16]  R. Byers Solving the algebraic Riccati equation with the matrix sign function , 1987 .

[17]  Daniel Boley,et al.  A parallel QR algorithm for the nonsymmetric eigenvalue problem , 1989 .

[18]  G. W. Stewart,et al.  A parallel implementation of the QR-algorithm , 1987, Parallel Comput..

[19]  G. A. Geist,et al.  Finding eigenvalues and eigenvectors of unsymmetric matrices using a hypercube multiprocessor , 1989, C3P.

[20]  C. Bischof Incremental condition estimation , 1990 .

[21]  A. Varga,et al.  Model Reduction Routines for SLICOT , 1999 .

[22]  Enrique S. Quintana-Ortí,et al.  Efficient Solution of Coupled Lyapunov Equations via Matrix Sign Function Iteration , 1998 .

[23]  Thilo Penzl Eigenvalue decay bounds for solutions of Lyapunov equations: the symmetric case , 2000 .

[24]  Sabine Van Huffel,et al.  SLICOT—A Subroutine Library in Systems and Control Theory , 1999 .

[25]  Luigi Fortuna,et al.  Model Order Reduction Techniques with Applications in Electrical Engineering , 1992 .

[26]  Jack J. Dongarra,et al.  A Parallel Implementation of the Nonsymmetric QR Algorithm for Distributed Memory Architectures , 2002, SIAM J. Sci. Comput..

[27]  Alan J. Laub,et al.  A collection of benchmark examples for the numerical solution of algebraic Riccati equations I: Continuous-time case , 1998 .

[28]  A. Laub,et al.  The matrix sign function , 1995, IEEE Trans. Autom. Control..

[29]  A. Laub,et al.  Numerical solution of the discrete-time periodic Riccati equation , 1994, IEEE Trans. Autom. Control..