Balanced Truncation Model Reduction of Large-Scale Dense Systems on Parallel Computers
暂无分享,去创建一个
Enrique S. Quintana-Ortí | Peter Benner | Gregorio Quintana-Ortí | E. S. Quintana-Ortí | E. S. Quintana‐Ortí | P. Benner | G. Quintana-Ortí | E. Quintana-Ortí
[1] Robert A. van de Geijn,et al. Parallelizing the QR Algorithm for the Unsymmetric Algebraic Eigenvalue Problem: Myths and Reality , 1996, SIAM J. Sci. Comput..
[2] James Demmel,et al. Design of a Parallel Nonsymmetric Eigenroutine Toolbox, Part I , 1993, PPSC.
[3] Enrique S. Quintana-Ortí,et al. Parallel Distributed Solvers for Large Stable Generalized Lyapunov Equations , 1999, Parallel Process. Lett..
[4] Z. Drmač. Accurate Computation of the Product-Induced Singular Value Decomposition with Applications , 1998 .
[5] Numerical realization of the balanced reduction of a control problem , 1996 .
[6] J. D. Roberts,et al. Linear model reduction and solution of the algebraic Riccati equation by use of the sign function , 1980 .
[7] Jesse L. Barlow,et al. More Accurate Bidiagonal Reduction for Computing the Singular Value Decomposition , 2001, SIAM J. Matrix Anal. Appl..
[8] B. Moore. Principal component analysis in linear systems: Controllability, observability, and model reduction , 1981 .
[9] Vladimir B. Larin,et al. Construction of square root factor for solution of the Lyapunov matrix equation , 1993 .
[10] I. Postlethwaite,et al. Truncated balanced realization of a stable non-minimal state-space system , 1987 .
[11] B. Wie,et al. Approach to large space structure control system design using traditional tools , 1990 .
[12] S. Hammarling. Numerical Solution of the Stable, Non-negative Definite Lyapunov Equation , 1982 .
[13] Jack J. Dongarra,et al. Implementation of some concurrent algorithms for matrix factorization , 1986, Parallel Comput..
[14] M. Safonov,et al. A Schur method for balanced-truncation model reduction , 1989 .
[15] Adam W. Bojanczyk,et al. Periodic Schur decomposition: algorithms and applications , 1992, Optics & Photonics.
[16] R. Byers. Solving the algebraic Riccati equation with the matrix sign function , 1987 .
[17] Daniel Boley,et al. A parallel QR algorithm for the nonsymmetric eigenvalue problem , 1989 .
[18] G. W. Stewart,et al. A parallel implementation of the QR-algorithm , 1987, Parallel Comput..
[19] G. A. Geist,et al. Finding eigenvalues and eigenvectors of unsymmetric matrices using a hypercube multiprocessor , 1989, C3P.
[20] C. Bischof. Incremental condition estimation , 1990 .
[21] A. Varga,et al. Model Reduction Routines for SLICOT , 1999 .
[22] Enrique S. Quintana-Ortí,et al. Efficient Solution of Coupled Lyapunov Equations via Matrix Sign Function Iteration , 1998 .
[23] Thilo Penzl. Eigenvalue decay bounds for solutions of Lyapunov equations: the symmetric case , 2000 .
[24] Sabine Van Huffel,et al. SLICOT—A Subroutine Library in Systems and Control Theory , 1999 .
[25] Luigi Fortuna,et al. Model Order Reduction Techniques with Applications in Electrical Engineering , 1992 .
[26] Jack J. Dongarra,et al. A Parallel Implementation of the Nonsymmetric QR Algorithm for Distributed Memory Architectures , 2002, SIAM J. Sci. Comput..
[27] Alan J. Laub,et al. A collection of benchmark examples for the numerical solution of algebraic Riccati equations I: Continuous-time case , 1998 .
[28] A. Laub,et al. The matrix sign function , 1995, IEEE Trans. Autom. Control..
[29] A. Laub,et al. Numerical solution of the discrete-time periodic Riccati equation , 1994, IEEE Trans. Autom. Control..