Non-resonant collider signatures of a singlet-driven electroweak phase transition

A bstractWe analyze the collider signatures of the real singlet extension of the Standard Model in regions consistent with a strong first-order electroweak phase transition and a singlet-like scalar heavier than the Standard Model-like Higgs. A definitive correlation exists between the strength of the phase transition and the trilinear coupling of the Higgs to two singlet-like scalars, and hence between the phase transition and non-resonant scalar pair production involving the singlet at colliders. We study the prospects for observing these processes at the LHC and a future 100 TeV pp collider, focusing particularly on double singlet production. We also discuss correlations between the strength of the electroweak phase transition and other observables at hadron and future lepton colliders. Searches for non-resonant singlet-like scalar pair production at 100 TeV would provide a sensitive probe of the electroweak phase transition in this model, complementing resonant di-Higgs searches and precision measurements. Our study illustrates a strategy for systematically exploring the phenomenologically viable parameter space of this model, which we hope will be useful for future work.

[1]  Igor P. Ivanov Building and testing models with extended Higgs sectors , 2017, 1702.03776.

[2]  Hiren H. Patel,et al.  Baryon washout, electroweak phase transition, and perturbation theory , 2011, 1101.4665.

[3]  U. Baur,et al.  Determining the Higgs boson self-coupling at hadron colliders , 2003 .

[4]  Roman Jackiw,et al.  Symmetry Behavior at Finite Temperature , 1974 .

[5]  W. Porod,et al.  Vevacious: a tool for finding the global minima of one-loop effective potentials with many scalars , 2013, 1307.1477.

[6]  S. P. Martin Taming the Goldstone contributions to the effective potential , 2014, 1406.2355.

[7]  T. Hahn,et al.  Generating Feynman Diagrams and Amplitudes with FeynArts 3 , 2001 .

[8]  M. Quirós Finite temperature field theory and phase transitions , 1999, hep-ph/9901312.

[9]  N. K. Nielsen,et al.  On the Gauge Dependence of Spontaneous Symmetry Breaking in Gauge Theories , 1975 .

[10]  S. P. Martin,et al.  Vectorlike leptons at the Large Hadron Collider , 2015, 1510.03456.

[11]  Higgs Working Group Report of the Snowmass 2013 Community Planning Study , 2013, 1310.8361.

[12]  Marco O. P. Sampaio,et al.  All one-loop scalar vertices in the effective potential approach , 2016, 1606.07069.

[13]  T. Stefaniak,et al.  Status of the Higgs singlet extension of the standard model after LHC run 1 , 2015, 1501.02234.

[14]  Ligong Bian,et al.  Gravitational Waves, baryon asymmetry of the universe and electric dipole moment in the CP-violating NMSSM , 2017, Chinese Physics C.

[15]  Francesco Riva,et al.  Strong electroweak phase transitions in the Standard Model with a singlet , 2011, 1107.5441.

[16]  Ian Low,et al.  Double take on new physics in double Higgs boson production , 2014, 1405.7040.

[17]  J. No,et al.  Probing the Higgs Portal at the LHC Through Resonant di-Higgs Production , 2013, 1310.6035.

[18]  S. Dawson,et al.  Exploring resonant di-Higgs boson production in the Higgs singlet model , 2014, 1410.5488.

[19]  Gabe Shaughnessy,et al.  Singlet Higgs phenomenology and the electroweak phase transition , 2007, 0705.2425.

[20]  M. Perelstein,et al.  Stop-Catalyzed Baryogenesis Beyond the MSSM , 2015, 1509.02934.

[21]  Jiang-Hao Yu,et al.  Electroweak baryogenesis in a scalar-assisted vectorlike fermion model , 2015, 1509.02931.

[22]  David Curtin,et al.  Testing electroweak baryogenesis with future colliders , 2014, 1409.0005.

[23]  J. No Large Gravitational Wave Background Signals in Electroweak Baryogenesis Scenarios , 2011, 1103.2159.

[24]  M. Garny,et al.  On the gauge dependence of vacuum transitions at finite temperature , 2012, 1205.3392.

[25]  S. M. Etesami,et al.  Searches for electroweak production of charginos, neutralinos, and sleptons decaying to leptons and W, Z, and Higgs bosons in pp collisions at 8 TeV , 2014, The European physical journal. C, Particles and fields.

[26]  Matthew McCullough,et al.  New probe of naturalness. , 2013, Physical review letters.

[27]  M. Perelstein,et al.  Dynamics of Electroweak Phase Transition In Singlet-Scalar Extension of the Standard Model , 2017, 1704.03381.

[28]  D. Curtin,et al.  Excluding electroweak baryogenesis in the MSSM , 2012, 1203.2932.

[29]  C. Wagner,et al.  Probing the electroweak phase transition at the LHC , 2015, 1512.00068.

[30]  Mark Trodden Electroweak Baryogenesis , 1998 .

[31]  L. A. Granado Cardoso,et al.  Search for the decay Bs0→D¯0f0980$$ {B}_s^0\to {\overline{D}}^0{f}_0(980) $$ , 2015, 1505.01654.

[32]  Paul Langacker,et al.  CERN LHC phenomenology of an extended standard model with a real scalar singlet , 2007, 0706.4311.

[33]  G. Moore,et al.  Can electroweak bubble walls run away , 2009, 0903.4099.

[34]  A. Katz,et al.  Baryogenesis and gravitational waves from runaway bubble collisions , 2016, 1608.00583.

[35]  H. Ramani,et al.  Thermal resummation and phase transitions , 2016, The European Physical Journal C.

[36]  S. Kanemura,et al.  Radiative corrections to the Higgs boson couplings in the model with an additional real singlet scalar field , 2015, 1511.06211.

[37]  Lian-tao Wang,et al.  Probing the Electroweak Phase Transition with Higgs Factories and Gravitational Waves , 2016, 1608.06619.

[38]  J. Espinosa,et al.  Interplay of infrared divergences and gauge dependence of the effective potential , 2016, 1607.08432.

[39]  N. Arkani-Hamed,et al.  Physics opportunities of a 100 TeV proton–proton collider , 2015, 1511.06495.

[40]  Scoap Searches for electroweak production of charginos, neutralinos, and sleptons decaying to leptons and W, Z, and Higgs bosons in pp collisions at 8 TeV , 2014 .

[41]  M. Pierini,et al.  The light stop window , 2012, 1212.6847.

[42]  M. McCullough An Indirect Model-Dependent Probe of the Higgs Self-Coupling , 2013, 1312.3322.

[43]  Margarete Mühlleitner,et al.  Singlet extensions of the standard model at LHC Run 2: benchmarks and comparison with the NMSSM , 2015, 1512.05355.

[44]  Maxim Perelstein,et al.  Higgs self-coupling as a probe of the electroweak phase transition , 2007, 0711.3018.

[45]  A. Safonov,et al.  Resonant di-Higgs boson production in the b¯bWW channel: Probing the electroweak phase transition at the LHC , 2017, 1701.04442.

[46]  A. Barr,et al.  m(T2): The Truth behind the glamour , 2003, hep-ph/0304226.

[47]  S. Forte,et al.  Parton distributions with LHC data , 2012, 1207.1303.

[48]  D. López-Val,et al.  Heavy to light Higgs boson decays at NLO in the singlet extension of the Standard Model , 2015, 1511.08120.

[49]  M. Chala,et al.  Unified explanation for dark matter and electroweak baryogenesis with direct detection and gravitational wave signatures , 2016, 1605.08663.

[50]  J. Favereau,et al.  DELPHES 3: a modular framework for fast simulation of a generic collider experiment , 2013, Journal of High Energy Physics.

[51]  K. Cranmer,et al.  Asymptotic formulae for likelihood-based tests of new physics , 2010, 1007.1727.

[52]  Andrea Tesi,et al.  Singlet-like Higgs bosons at present and future colliders , 2015, 1505.05488.

[53]  Antoine Petiteau,et al.  Science with the space-based interferometer eLISA. II: gravitational waves from cosmological phase transitions , 2015, 1512.06239.

[54]  J. Kozaczuk Bubble expansion and the viability of singlet-driven electroweak baryogenesis , 2015, 1506.04741.

[55]  M. Ramsey-Musolf,et al.  Complex scalar singlet dark matter: Vacuum stability and phenomenology , 2012, 1202.1316.

[56]  S. Inoue,et al.  Two-step electroweak baryogenesis , 2015, 1508.05404.

[57]  T. Hahn,et al.  Automatized One-Loop Calculations in 4 and D dimensions , 1998 .

[58]  W. Yao,et al.  Probing new physics of cubic Higgs boson interaction via Higgs pair production at hadron colliders , 2015, 1506.03302.

[59]  Matts Roos,et al.  MINUIT-a system for function minimization and analysis of the parameter errors and correlations , 1984 .

[60]  U. Baur,et al.  Measuring the Higgs boson self-coupling at the Large Hadron Collider. , 2002, Physical review letters.

[61]  J. Bij,et al.  HIGGS BOSON PAIR PRODUCTION VIA GLUON FUSION , 1988 .

[62]  S. Lloyd,et al.  LHAPDF6: parton density access in the LHC precision era , 2014, The European Physical Journal C.

[63]  S. Mrenna,et al.  Pythia 6.3 physics and manual , 2003, hep-ph/0308153.

[64]  J. Kozaczuk,et al.  Electroweak Baryogenesis from Exotic Electroweak Symmetry Breaking , 2015, 1504.05195.

[65]  K. Krizka,et al.  Very light scalar top quarks at the LHC , 2012, 1212.4856.

[66]  P. Chang,et al.  Electroweak Phase Transition and Baryogenesis , 2011 .

[67]  Felix Kling,et al.  Maximizing the significance in Higgs boson pair analyses , 2017 .

[68]  Claude Duhr,et al.  FeynRules 2.0 - A complete toolbox for tree-level phenomenology , 2013, Comput. Phys. Commun..

[69]  C. Grojean,et al.  The leptonic future of the Higgs , 2017, 1704.02333.

[70]  M. Mühlleitner,et al.  The measurement of the Higgs self-coupling at the LHC: theoretical status , 2012, 1212.5581.

[71]  A. D. Plascencia,et al.  Convexity, gauge-dependence and tunneling rates , 2015, 1510.07613.

[72]  M. White,et al.  Gravitational wave, collider and dark matter signals from a scalar singlet electroweak baryogenesis , 2017, Journal of High Energy Physics.

[73]  Carroll L. Wainwright,et al.  Singlet-catalyzed electroweak phase transitions and precision Higgs boson studies , 2014, 1407.5342.

[74]  Matthew J. Dolan,et al.  New physics in LHC Higgs boson pair production , 2012, 1210.8166.

[75]  Harry Harmens,et al.  Working group report , 2011 .

[76]  Jae Sik Lee,et al.  An exploratory study of Higgs-boson pair production , 2015, 1505.00957.

[77]  M. Schwartz,et al.  Consistent use of effective potentials , 2014, 1408.0287.

[78]  U. Baur,et al.  Measuring the Higgs Boson Self Coupling at the LHC and Finite Top Mass Matrix Elements , 2002, hep-ph/0206024.

[79]  E. Senaha,et al.  Improved sphaleron decoupling condition and the Higgs coupling constants in the real singlet-extended standard model , 2014, 1406.0433.

[80]  M. McCullough Erratum: Indirect model-dependent probe of the Higgs self-coupling [Phys. Rev. D90, 015001 (2014)] , 2015 .

[81]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[82]  V. M. Ghete,et al.  Search for anomalous production of events with three or more leptons in pp , 2014 .

[83]  D. d’Enterria Physics case of FCC-ee , 2016, 1601.06640.

[84]  Hiren H. Patel,et al.  Stepping Into Electroweak Symmetry Breaking: Phase Transitions and Higgs Phenomenology , 2012, 1212.5652.

[85]  J. Wacker,et al.  Measuring the tth coupling from SSDL+2b measurements , 2013, 1306.5695.

[86]  G. Degrassi,et al.  Higgs mass and vacuum stability in the Standard Model at NNLO , 2012, 1205.6497.

[87]  Hiren H. Patel,et al.  Color Breaking in the Early Universe , 2013, 1303.1140.

[88]  Timothy Cohen,et al.  Electroweak baryogenesis and Higgs signatures , 2012, 1203.2924.

[89]  Yaquan Fang,et al.  Searching heavier Higgs boson via di-Higgs production at LHC Run-2 , 2015, 1507.02644.

[90]  T. Plehn,et al.  PAIR PRODUCTION OF NEUTRAL HIGGS PARTICLES IN GLUON-GLUON COLLISIONS , 1996 .

[91]  C. Jackson,et al.  Higgs-pair production and measurement of the triscalar coupling at LHC(8,14) , 2013, 1311.2931.

[92]  L. Hall,et al.  Electroweak phase transition and baryogenesis. , 1992, Physical review. D, Particles and fields.

[93]  R. Frederix,et al.  The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations , 2014, 1405.0301.

[94]  Peter Winslow,et al.  Singlet-catalyzed electroweak phase transitions in the 100 TeV frontier , 2016, 1605.06123.

[95]  S. Forte,et al.  Parton distributions with QED corrections , 2013, 1308.0598.

[96]  Rui Santos,et al.  NLO electroweak corrections in general scalar singlet models , 2017, Journal of High Energy Physics.

[97]  T. Stefaniak,et al.  The Higgs singlet extension at LHC Run 2 , 2016, 1606.07793.

[98]  A. Tranberg,et al.  Dimensional reduction of the Standard Model coupled to a new singlet scalar field , 2016, 1609.06230.

[99]  Michael Spira,et al.  Neutral Higgs-Boson Pair Production at Hadron Colliders: QCD Corrections , 1998 .

[100]  C. Caprini,et al.  Supersonic electroweak baryogenesis: Achieving baryogenesis for fast bubble walls , 2011, 1111.1726.

[101]  H. K. Lou,et al.  The Higgs portal above threshold , 2014, 1412.0258.

[102]  A. Barr,et al.  Higgs self-coupling measurements at a 100 TeV hadron collider , 2014, 1412.7154.

[103]  M. Perelstein,et al.  750 GeV diphoton excess and strongly first-order electroweak phase transition , 2016, 1603.04488.

[104]  Matthew J. Dolan,et al.  Di-Higgs final states augMT2ed – Selecting hh events at the high luminosity LHC , 2013, 1309.6318.

[105]  Claude Duhr,et al.  FeynRules - Feynman rules made easy , 2008, Comput. Phys. Commun..

[106]  T. R. Fernandez Perez Tomei,et al.  Search for new physics in same-sign dilepton events in proton–proton collisions at $$\sqrt{s} = 13\,\text {TeV} $$s=13TeV , 2016, The European physical journal. C, Particles and fields.

[107]  P. Catastini,et al.  Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} , 2014, Journal of High Energy Physics.

[108]  C. Lester,et al.  Measuring masses of semi-invisibly decaying particles pair produced at hadron colliders , 1999, hep-ph/9906349.

[109]  Marco O. P. Sampaio,et al.  Two-loop stability of a complex singlet extended Standard Model , 2014, 1411.4048.

[110]  Hiren H. Patel,et al.  Vacuum stability, perturbativity, and scalar singlet dark matter , 2009, 0910.3167.

[111]  P. Ghorbani Electroweak baryogenesis and dark matter via a pseudoscalar vs. scalar , 2017, 1703.06506.

[112]  K. Nikolopoulos,et al.  Physics at a 100 TeV pp collider: Higgs and EW symmetry breaking studies , 2016, 1606.09408.