Chaos and fractal properties induced by noninvertibility of models in the form of maps

[1]  Christian Mira,et al.  Sensitivity problems related to certain bifurcations in non-linear recurrence relations , 1969, Autom..

[2]  J. Lawton,et al.  Dynamic complexity in predator-prey models framed in difference equations , 1975, Nature.

[3]  J. Guckenheimer,et al.  The dynamics of density dependent population models , 1977, Journal of mathematical biology.

[4]  Christian Mira,et al.  Recurrences and Discrete Dynamic Systems , 1980 .

[5]  C. Mira,et al.  Complex dynamics in two-dimensional endomorphisms , 1980 .

[7]  On the bifurcation between a chaotic area of T K and a chaotic area of T , 1985 .

[8]  Bifurcations occurring in absorptive and chaotic areas , 1987 .

[9]  SUR Certaines zones chaotiques , 1988 .

[10]  Edward N. Lorenz,et al.  Computational chaos-a prelude to computational instability , 1989 .

[11]  Multiconnected chaotic areas in second-order endomorphisms , 1990 .

[12]  Raymond A. Adomaitis,et al.  RESONANCE PHENOMENA IN AN ADAPTIVELY-CONTROLLED SYSTEM , 1991 .

[13]  Raymond A. Adomaitis,et al.  Noninvertibility and the structure of basins of attraction in a model adaptive control system , 1991 .

[14]  Raymond A. Adomaitis,et al.  The Structure of Basin Boundaries in a Simple Adaptive Control System , 1992 .

[15]  A. N. Sharkovsky,et al.  IDEAL TURBULENCE: ATTRACTORS OF DETERMINISTIC SYSTEMS MAY LIE IN THE SPACE OF RANDOM FIELDS , 1992 .

[16]  L. Chua,et al.  NONLINEAR DYNAMICS OF A CLASS OF ANALOG-TO-DIGITAL CONVERTERS , 1992 .

[17]  Raymond A. Adomaitis,et al.  Global Stability Analysis of an Adaptively-Controlled Mixing Tank Experiment , 1992, 1992 American Control Conference.

[18]  S. Kolyada,et al.  On dynamics of triangular maps of the square , 1992, Ergodic Theory and Dynamical Systems.

[19]  J. C. Cathala,et al.  SINGULAR POINTS WITH TWO MULTIPLIERS, S1=−S2=1, IN THE BIFURCATION CURVES OF MAPS , 1992 .

[20]  Laura Gardini Some global bifurcations of two-dimensional endomorphisms by use of critical lines , 1992 .

[21]  Raymond A. Adomaitis,et al.  Noninvertibility in neural networks , 1993, IEEE International Conference on Neural Networks.

[22]  ONE-DIMENSIONAL CHAOS IN IMPULSED LINEAR OSCILLATING CIRCUITS , 1993 .

[23]  Leon O. Chua,et al.  Dry turbulence from a Time-delayed Chua's Circuit , 1993, J. Circuits Syst. Comput..

[24]  Dmitry Turaev,et al.  On models with non-rough Poincare´ homoclinic curves , 1993 .

[25]  L. Snoha,et al.  On topological entropy of triangular maps of the square , 1993, Bulletin of the Australian Mathematical Society.

[26]  Christian Mira,et al.  ON BEHAVIORS OF TWO-DIMENSIONAL ENDOMORPHISMS: ROLE OF THE CRITICAL CURVES , 1993 .

[27]  Yuri Maistrenko,et al.  Noninvertible Two-Dimensional Maps Arising in Radiophysics , 1994 .

[28]  Laura Gardini,et al.  A DOUBLE LOGISTIC MAP , 1994 .

[29]  Laura Gardini,et al.  Homoclinic bifurcations in n -dimensional endomorphisms, due to expanding periodic points , 1994 .

[30]  B. Cessac,et al.  Mean-field equations, bifurcation map and route to chaos in discrete time neural networks , 1994 .

[31]  Christian Mira,et al.  Basin bifurcations of two-dimensional noninvertible maps : Fractalization of basins , 1994 .

[32]  FRACTAL AGGREGATION OF BASIN ISLANDS IN TWO-DIMENSIONAL QUADRATIC NONINVERTIBLE MAPS , 1995 .

[33]  EXTENSIONS OF THE NOTION OF CHAOTIC AREA IN SECOND-ORDER ENDOMORPHISMS , 1995 .

[34]  Christian Mira,et al.  Some Properties of a Two-Dimensional Piecewise-Linear Noninvertible Map , 1996 .

[35]  Christian Mira,et al.  Chaotic Dynamics in Two-Dimensional Noninvertible Maps , 1996 .

[36]  Mira Christian ABOUT TWO-DIMENSIONAL PIECEWISE CONTINUOUS NONINVERTIBLE MAPS , 1996 .

[37]  Mira Christian,et al.  PLANE FOLIATION OF TWO-DIMENSIONAL NONINVERTIBLE MAPS , 1996 .

[38]  Christian Mira,et al.  On Some Properties of Invariant Sets of Two-Dimensional Noninvertible Maps , 1997 .

[39]  Leonid P Shilnikov Mathematical Problems of Nonlinear Dynamics: A Tutorial , 1997 .