Quantum computing with neutral atoms

The manipulation of neutral atoms by light is at the heart of countless scientific discoveries in the field of quantum physics in the last three decades. The level of control that has been achieved at the single particle level within arrays of optical traps, while preserving the fundamental properties of quantum matter (coherence, entanglement, superposition), makes these technologies prime candidates to implement disruptive computation paradigms. In this paper, we review the main characteristics of these devices from atoms / qubits to application interfaces, and propose a classification of a wide variety of tasks that can already be addressed in a computationally efficient manner in the Noisy Intermediate Scale Quantum era we are in. We illustrate how applications ranging from optimization challenges to simulation of quantum systems can be explored either at the digital level (programming gate-based circuits) or at the analog level (programming Hamiltonian sequences). We give evidence of the intrinsic scalability of neutral atom quantum processors in the 100-1,000 qubits range and introduce prospects for universal fault tolerant quantum computing and applications beyond quantum computing.

[1]  Panos M. Pardalos,et al.  Statistical analysis of financial networks , 2005, Comput. Stat. Data Anal..

[2]  Morten Kjaergaard,et al.  Superconducting Qubits: Current State of Play , 2019, Annual Review of Condensed Matter Physics.

[3]  Nicolas Gisin,et al.  Quantum repeaters based on atomic ensembles and linear optics , 2009, 0906.2699.

[4]  Hans Peter Büchler,et al.  Observation of a symmetry-protected topological phase of interacting bosons with Rydberg atoms , 2018, Science.

[5]  John Preskill,et al.  Quantum Computing in the NISQ era and beyond , 2018, Quantum.

[6]  Thomas G. Walker,et al.  Quantum information with Rydberg atoms , 2009, 0909.4777.

[7]  A. Kitaev,et al.  Quantum codes on a lattice with boundary , 1998, quant-ph/9811052.

[8]  Andrew Lucas,et al.  Ising formulations of many NP problems , 2013, Front. Physics.

[9]  D. Browne,et al.  Blueprint for fault-tolerant quantum computation with Rydberg atoms , 2017, 1707.06498.

[10]  P. Littlewood,et al.  Importance of many-body effects in the Kernel of hemoglobin for ligand binding. , 2012, Physical review letters.

[11]  S. Ravets,et al.  Measurement of the Angular Dependence of the Dipole-Dipole Interaction Between Two Individual Rydberg Atoms at a F\"orster Resonance , 2015, 1504.00301.

[12]  L. Landau Fermionic quantum computation , 2000 .

[13]  B. Bauer,et al.  Quantum Algorithms for Quantum Chemistry and Quantum Materials Science. , 2020, Chemical reviews.

[14]  T. Lahaye,et al.  Many-body physics with individually controlled Rydberg atoms , 2020, 2002.07413.

[15]  Antoine Browaeys,et al.  Synthetic three-dimensional atomic structures assembled atom by atom , 2017, Nature.

[16]  P. Hannaford,et al.  Simulating quantum spin models using Rydberg-excited atomic ensembles in magnetic microtrap arrays , 2016, 1608.00251.

[17]  Victor V. Albert,et al.  Dynamically protected cat-qubits: a new paradigm for universal quantum computation , 2013, 1312.2017.

[18]  E. Kashefi,et al.  Randomized benchmarking in the analogue setting , 2019, Quantum Science and Technology.

[19]  L. Henriet Robustness to spontaneous emission of a variational quantum algorithm , 2019, Physical Review A.

[20]  Hannes Bernien,et al.  Parallel Implementation of High-Fidelity Multiqubit Gates with Neutral Atoms. , 2019, Physical review letters.

[21]  T. Liebisch,et al.  Level shifts of rubidium Rydberg states due to binary interactions , 2007 .

[22]  Shruti Puri,et al.  Engineering the quantum states of light in a Kerr-nonlinear resonator by two-photon driving , 2017, npj Quantum Information.

[23]  Igor Protsenko,et al.  Sub-poissonian loading of single atoms in a microscopic dipole trap , 2001, Nature.

[24]  Hans Peter Büchler,et al.  Accurate Mapping of Multilevel Rydberg Atoms on Interacting Spin-1/2 Particles for the Quantum Simulation of Ising Models. , 2017, Physical review letters.

[25]  P. Zoller,et al.  A coherent quantum annealer with Rydberg atoms , 2016, Nature Communications.

[26]  Thomas Ayral,et al.  Solving optimization problems with Rydberg analog quantum computers: Realistic requirements for quantum advantage using noisy simulation and classical benchmarks , 2020, Physical Review A.

[27]  Pedram Khalili Amiri,et al.  Quantum computers , 2003 .

[28]  M. Weidemüller,et al.  Relaxation of an Isolated Dipolar-Interacting Rydberg Quantum Spin System. , 2017, Physical review letters.

[29]  Kristan Temme,et al.  Supervised learning with quantum-enhanced feature spaces , 2018, Nature.

[30]  Harold Metcalf,et al.  Laser cooling and trapping of atoms , 2003 .

[31]  Ievgeniia Oshurko Quantum Machine Learning , 2020, Quantum Computing.

[32]  Maria Schuld,et al.  Supervised Learning with Quantum Computers , 2018 .

[33]  P. Zoller,et al.  Emerging Two-Dimensional Gauge Theories in Rydberg Configurable Arrays , 2019, Physical Review X.

[34]  J. Emerson,et al.  Scalable noise estimation with random unitary operators , 2005, quant-ph/0503243.

[36]  Chris Cade,et al.  Strategies for solving the Fermi-Hubbard model on near-term quantum computers , 2019, 1912.06007.

[37]  Keisuke Fujii,et al.  Quantum circuit learning , 2018, Physical Review A.

[38]  Archil Avaliani,et al.  Quantum Computers , 2004, ArXiv.

[39]  David Schuster,et al.  Circuit quantum electrodynamics , 2007 .

[40]  Alán Aspuru-Guzik,et al.  The theory of variational hybrid quantum-classical algorithms , 2015, 1509.04279.

[41]  J. Marangos Electromagnetically induced transparency , 1998 .

[42]  Todd A. Brun,et al.  Quantum Computing , 2011, Computer Science, The Hardware, Software and Heart of It.

[43]  S. Ravets,et al.  Tunable two-dimensional arrays of single Rydberg atoms for realizing quantum Ising models , 2016, Nature.

[44]  A. Browaeys,et al.  Free-space lossless state detection of a single trapped atom. , 2010, Physical review letters.

[45]  Daniel Sank,et al.  Fast accurate state measurement with superconducting qubits. , 2014, Physical review letters.

[46]  J. Preskill,et al.  Topological quantum memory , 2001, quant-ph/0110143.

[47]  R. Nandkishore,et al.  Many-Body Localization and Thermalization in Quantum Statistical Mechanics , 2014, 1404.0686.

[48]  Z. Papic,et al.  Weak ergodicity breaking from quantum many-body scars , 2017, Nature Physics.

[49]  Georg Heinze,et al.  Photonic quantum state transfer between a cold atomic gas and a crystal , 2017, Nature.

[50]  Alán Aspuru-Guzik,et al.  A variational eigenvalue solver on a photonic quantum processor , 2013, Nature Communications.

[51]  M. Lukin,et al.  Probing many-body dynamics on a 51-atom quantum simulator , 2017, Nature.

[52]  J. Cirac,et al.  Long-distance quantum communication with atomic ensembles and linear optics , 2001, Nature.

[53]  M. Lukin,et al.  Quantum optimization of maximum independent set using Rydberg atom arrays , 2018, Science.

[54]  A. H. Werner,et al.  Randomized Benchmarking for Individual Quantum Gates. , 2018, Physical review letters.

[55]  R. Clegg The History of Fret , 2006 .

[56]  J. Joo,et al.  Variational quantum algorithms for nonlinear problems , 2019, Physical Review A.

[57]  S. Ravets,et al.  Coherent excitation transfer in a spin chain of three Rydberg atoms. , 2014, Physical review letters.

[58]  J. Pritchard,et al.  Rydberg atom quantum technologies , 2019, Journal of Physics B: Atomic, Molecular and Optical Physics.

[59]  Norbert Kalb,et al.  A quantum gate between a flying optical photon and a single trapped atom , 2014, Nature.

[60]  P. Zoller,et al.  Self-verifying variational quantum simulation of lattice models , 2018, Nature.

[61]  Thomas G. Walker,et al.  Demonstration of a neutral atom controlled-NOT quantum gate. , 2009, Physical review letters.

[62]  Daniel J. Cole,et al.  Renormalization of myoglobin–ligand binding energetics by quantum many-body effects , 2014, Proceedings of the National Academy of Sciences.

[63]  M. Weidemüller,et al.  Observing the Dynamics of Dipole-Mediated Energy Transport by Interaction-Enhanced Imaging , 2013, Science.

[64]  J. Eisert,et al.  Quantum many-body systems out of equilibrium , 2014, Nature Physics.

[65]  Lukin,et al.  Fast quantum gates for neutral atoms , 2000, Physical review letters.

[66]  I. Bloch,et al.  Crystallization in Ising quantum magnets , 2015, Science.

[67]  E. Farhi,et al.  A Quantum Approximate Optimization Algorithm , 2014, 1411.4028.

[68]  S. Ravets,et al.  Direct measurement of the van der Waals interaction between two Rydberg atoms. , 2014, Physical review letters.

[69]  E. Wigner,et al.  Über das Paulische Äquivalenzverbot , 1928 .

[70]  Isaac L. Chuang,et al.  Quantum Computation and Quantum Information (10th Anniversary edition) , 2011 .

[71]  D. Barredo,et al.  Observing the Space- and Time-Dependent Growth of Correlations in Dynamically Tuned Synthetic Ising Models with Antiferromagnetic Interactions , 2017, Physical Review X.

[72]  W. Krauth,et al.  Dynamical mean-field theory of strongly correlated fermion systems and the limit of infinite dimensions , 1996 .

[73]  C. Adams,et al.  Nonlinear quantum optics mediated by Rydberg interactions , 2016, 1602.06117.

[74]  A. Cooper,et al.  Author Correction: High-fidelity entanglement and detection of alkaline-earth Rydberg atoms , 2020 .

[75]  J. Marangos,et al.  Electromagnetically induced transparency : Optics in coherent media , 2005 .

[76]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[77]  Simone Severini,et al.  Hierarchical quantum classifiers , 2018, npj Quantum Information.

[78]  L. Balents Spin liquids in frustrated magnets , 2010, Nature.

[79]  M. Girvin,et al.  Quantum Simulation of Gauge Theories and Inflation , 2019, Journal Club for Condensed Matter Physics.

[80]  Jacob biamonte,et al.  Quantum machine learning , 2016, Nature.

[81]  D. Barredo,et al.  Three-Dimensional Trapping of Individual Rydberg Atoms in Ponderomotive Bottle Beam Traps. , 2019, Physical review letters.

[82]  Jian-Wei Pan,et al.  Entanglement of two quantum memories via fibres over dozens of kilometres , 2020, Nature.

[83]  Antoine Browaeys,et al.  Single-Atom Trapping in Holographic 2D Arrays of Microtraps with Arbitrary Geometries , 2014, 1402.5329.

[84]  M. Saffman Quantum computing with atomic qubits and Rydberg interactions: progress and challenges , 2016, 1605.05207.

[85]  A. Cooper,et al.  High-fidelity entanglement and detection of alkaline-earth Rydberg atoms , 2020, Nature Physics.

[86]  Tommaso Calarco,et al.  Dressing the chopped-random-basis optimization: A bandwidth-limited access to the trap-free landscape , 2015, 1506.04601.

[87]  Z. Jacob,et al.  Opportunities for Nuclear Physics & Quantum Information Science , 2019, 1903.05453.

[88]  Darrick E. Chang,et al.  Quantum nonlinear optics — photon by photon , 2014, Nature Photonics.

[89]  Nohad Gresh,et al.  Tinker-HP: a massively parallel molecular dynamics package for multiscale simulations of large complex systems with advanced point dipole polarizable force fields† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c7sc04531j , 2017, Chemical science.

[90]  Alexey V. Gorshkov,et al.  Attractive photons in a quantum nonlinear medium , 2013, Nature.

[91]  Jens Eisert,et al.  Equilibration, thermalisation, and the emergence of statistical mechanics in closed quantum systems , 2015, Reports on progress in physics. Physical Society.

[92]  THE 3d-TO-4s-BY-2p HIGHWAY TO SUPERCONDUCTIVITY IN CUPRATES , 2002, cond-mat/0206350.

[93]  Thomas G. Walker,et al.  Fast ground state manipulation of neutral atoms in microscopic optical traps. , 2006, Physical review letters.

[94]  Klaus Mølmer,et al.  Fast Multiqubit Gates by Adiabatic Evolution in Interacting Excited-State Manifolds of Rydberg Atoms and Superconducting Circuits , 2020, Physical Review X.

[95]  P. Zoller,et al.  A quantum annealing architecture with all-to-all connectivity from local interactions , 2015, Science Advances.

[96]  Stephan Dürr,et al.  Optical π phase shift created with a single-photon pulse , 2015, Science Advances.

[97]  M. Nielsen The Fermionic canonical commutation relations and the Jordan-Wigner transform , 2005 .

[98]  C. Adams,et al.  All-optical quantum information processing using Rydberg gates. , 2013, Physical review letters.

[99]  Travis S. Humble,et al.  Quantum supremacy using a programmable superconducting processor , 2019, Nature.

[100]  Seth Lloyd,et al.  Universal Quantum Simulators , 1996, Science.

[101]  M. Mariantoni,et al.  Surface codes: Towards practical large-scale quantum computation , 2012, 1208.0928.

[102]  E. Wigner,et al.  About the Pauli exclusion principle , 1928 .

[103]  T. Oka,et al.  Floquet Engineering of Quantum Materials , 2018, Annual Review of Condensed Matter Physics.

[104]  N. Yao,et al.  Many-body localization in dipolar systems. , 2013, Physical review letters.

[105]  Alexey V. Gorshkov,et al.  Quantum nonlinear optics with single photons enabled by strongly interacting atoms , 2012, Nature.

[106]  Lev S. Bishop,et al.  CIRCUIT QUANTUM ELECTRODYNAMICS , 2010, Mesoscopic Physics meets Quantum Engineering.

[107]  Masoud Mohseni,et al.  Quantum approximate optimization of non-planar graph problems on a planar superconducting processor , 2020, 2004.04197.

[108]  A. S. Zibrov,et al.  Stationary pulses of light in an atomic medium , 2003, Nature.

[109]  W. K. Hale Frequency assignment: Theory and applications , 1980, Proceedings of the IEEE.

[110]  Sylvain Schwartz,et al.  High-Fidelity Control and Entanglement of Rydberg-Atom Qubits. , 2018, Physical review letters.

[111]  T. Fernholz,et al.  Exciton dynamics in emergent Rydberg lattices , 2013, 1306.0869.