A subwavelength plasmonic metamolecule exhibiting magnetic-based optical Fano resonance

We demonstrate that a subwavelength plasmonic metamolecule consisting of four nanoparticles supports a magnetic response spectrally overlapped with the electric dipole resonance. Small structural asymmetries lead to interference and thus a Fano resonance in scattering.

[1]  Peter Nordlander,et al.  Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance. , 2008, Nano letters.

[2]  Javier Aizpurua,et al.  Bridging quantum and classical plasmonics with a quantum-corrected model , 2012, Nature Communications.

[3]  Niels Verellen,et al.  Fano resonances in individual coherent plasmonic nanocavities. , 2009, Nano letters.

[4]  N Engheta,et al.  Negative effective permeability and left-handed materials at optical frequencies. , 2004, Optics express.

[5]  Harald Giessen,et al.  Plasmonic Building Blocks for Magnetic Molecules in Three‐Dimensional Optical Metamaterials , 2008 .

[6]  V. Shalaev Optical negative-index metamaterials , 2007 .

[7]  J. Pendry,et al.  Magnetism from conductors and enhanced nonlinear phenomena , 1999 .

[8]  Federico Capasso,et al.  Fano-like interference in self-assembled plasmonic quadrumer clusters. , 2010, Nano letters.

[9]  E. M. Lifshitz,et al.  Electrodynamics of continuous media , 1961 .

[10]  P. Nordlander,et al.  A Hybridization Model for the Plasmon Response of Complex Nanostructures , 2003, Science.

[11]  Federico Capasso,et al.  Self-Assembled Plasmonic Nanoparticle Clusters , 2010, Science.

[12]  Nader Engheta,et al.  Dynamical theory of artificial optical magnetism produced by rings of plasmonic nanoparticles , 2008, 0805.2329.

[13]  P. Nordlander,et al.  The Fano resonance in plasmonic nanostructures and metamaterials. , 2010, Nature materials.

[14]  N. Engheta,et al.  The quest for magnetic plasmons at optical frequencies. , 2009, Optics express.

[15]  Gennady Shvets,et al.  Engineering the electromagnetic properties of periodic nanostructures using electrostatic resonances. , 2004, Physical review letters.

[16]  Wenshan Cai,et al.  A negative permeability material at red light. , 2007, Optics express.

[17]  Daniel Ratchford,et al.  Controlled AFM manipulation of small nanoparticles and assembly of hybrid nanostructures , 2011, Nanotechnology.

[18]  Aristides A. G. Requicha,et al.  Nanoparticle manipulation by mechanical pushing: underlying phenomena and real-time monitoring , 1998 .

[19]  Suenne Kim,et al.  Atomic force microscope nanomanipulation with simultaneous visual guidance. , 2009, ACS nano.

[20]  E. N. Economou,et al.  Saturation of the magnetic response of split-ring resonators at optical frequencies. , 2005, Physical review letters.

[21]  Peter Nordlander,et al.  Heterodimers: plasmonic properties of mismatched nanoparticle pairs. , 2010, ACS nano.

[22]  J. Dionne,et al.  Controlling the interplay of electric and magnetic modes via Fano-like plasmon resonances. , 2011, Nano letters.

[23]  A subwavelength plasmonic metamolecule exhibiting magnetic-based optical Fano resonance , 2013, CLEO 2013.

[24]  J. Pendry,et al.  Negative refraction makes a perfect lens , 2000, Physical review letters.

[25]  Viktor Podolskiy,et al.  Plasmon modes and negative refraction in metal nanowire composites. , 2003, Optics express.

[26]  Federico Capasso,et al.  DNA-enabled self-assembly of plasmonic nanoclusters. , 2011, Nano letters.

[27]  L. Samuelson,et al.  Controlled manipulation of nanoparticles with an atomic force microscope , 1995 .

[28]  C. Papas Theory of electromagnetic wave propagation , 1965 .

[29]  R. Merlin Metamaterials and the Landau–Lifshitz permeability argument: Large permittivity begets high-frequency magnetism , 2009, Proceedings of the National Academy of Sciences.

[30]  S. Maier,et al.  Plasmonic systems unveiled by Fano resonances. , 2012, ACS nano.