Determining ecosystem functioning in Brazilian biomes through foliar carbon and nitrogen concentrations and stable isotope ratios

[1]  Pedro Walfir M. Souza Filho,et al.  Reconstructing Three Decades of Land Use and Land Cover Changes in Brazilian Biomes with Landsat Archive and Earth Engine , 2020, Remote. Sens..

[2]  L. Hutley,et al.  Net landscape carbon balance of a tropical savanna: Relative importance of fire and aquatic export in offsetting terrestrial production , 2020, Global change biology.

[3]  P. Ciais,et al.  Contribution of land use to the interannual variability of the land carbon cycle , 2020, Nature Communications.

[4]  P. Reich,et al.  Variation and evolution of C:N ratio among different organs enable plants to adapt to N‐limited environments , 2019, Global change biology.

[5]  L. Nogueira,et al.  Different resource-use strategies of invasive and native woody species from a seasonally dry tropical forest under drought stress and recovery. , 2019, Plant physiology and biochemistry : PPB.

[6]  C. Nobre,et al.  Amazon tipping point: Last chance for action , 2019, Science Advances.

[7]  P. Reich,et al.  Climate change effects on plant-soil feedbacks and consequences for biodiversity and functioning of terrestrial ecosystems , 2019, Science Advances.

[8]  M. R. Francelino,et al.  Climate and soils at the Brazilian semiarid and the forest-Caatinga problem: new insights and implications for conservation , 2019, Environmental Research Letters.

[9]  H. Pereira,et al.  Policy in Brazil (2016–2019) threaten conservation of the Amazon rainforest , 2019, Environmental Science & Policy.

[10]  Sambit Ghosh,et al.  Spatial heterogeneity in the relationship between precipitation and carbon isotopic discrimination in C3 plants: Inferences from a global compilation , 2019, Global and Planetary Change.

[11]  Global Models , 2019, Managing a Nation.

[12]  J. Ehleringer,et al.  Ecophysiological plasticity of Amazonian trees to long-term drought , 2018, Oecologia.

[13]  Andreas Huth,et al.  The importance of forest structure for carbon fluxes of the Amazon rainforest , 2018 .

[14]  J. Randerson,et al.  Global fire emissions estimates during 1997–2016 , 2017 .

[15]  C. Schaefer,et al.  Combining climatic and soil properties better predicts covers of Brazilian biomes , 2017, The Science of Nature.

[16]  C. Schaefer,et al.  Soil-vegetation relationships and community structure in a "terra-firme"-white-sand vegetation gradient in Viruá National Park, northern Amazon, Brazil. , 2017, Anais da Academia Brasileira de Ciencias.

[17]  Roberta E. Martin,et al.  Environmental controls on canopy foliar nitrogen distributions in a Neotropical lowland forest. , 2016, Ecological applications : a publication of the Ecological Society of America.

[18]  J. Ometto,et al.  Land cover changes and greenhouse gas emissions in two different soil covers in the Brazilian Caatinga. , 2016, The Science of the total environment.

[19]  Roberta E. Martin,et al.  Convergent elevation trends in canopy chemical traits of tropical forests , 2016, Global change biology.

[20]  L. Martinelli,et al.  Stable carbon composition of vegetation and soils across an altitudinal range in the coastal Atlantic Forest of Brazil , 2016, Trees.

[21]  Guirui Yu,et al.  Coordinated pattern of multi-element variability in leaves and roots across Chinese forest biomes , 2016 .

[22]  I. Wright,et al.  Relationships between soil nutrient status and nutrient-related leaf traits in Brazilian cerrado and seasonal forest communities , 2016, Plant and Soil.

[23]  J. Peñuelas,et al.  Factors influencing the foliar elemental composition and stoichiometry in forest trees in Spain , 2016 .

[24]  P. Ciais,et al.  Spatiotemporal patterns of terrestrial gross primary production: A review , 2015 .

[25]  L. Martinelli,et al.  Soil texture and chemical characteristics along an elevation range in the coastal Atlantic Forest of Southeast Brazil , 2015 .

[26]  G. Asner,et al.  Topographic controls on soil nitrogen availability in a lowland tropical forest , 2015 .

[27]  Víctor Arroyo-Rodríguez,et al.  Chronic anthropogenic disturbance drives the biological impoverishment of the Brazilian Caatinga vegetation , 2015 .

[28]  P. Cox,et al.  Observing terrestrial ecosystems and the carbon cycle from space , 2015, Global change biology.

[29]  J. Terborgh,et al.  Long-term decline of the Amazon carbon sink , 2015, Nature.

[30]  E. Sampaio,et al.  Nitrogen isotopic patterns in tropical forests along a rainfall gradient in Northeast Brazil , 2015, Plant and Soil.

[31]  D. Schimel,et al.  Effect of increasing CO2 on the terrestrial carbon cycle , 2014, Proceedings of the National Academy of Sciences.

[32]  Maycira Costa,et al.  Large-scale habitat mapping of the Brazilian Pantanal wetland: A synthetic aperture radar approach , 2014 .

[33]  Nadejda A. Soudzilovskaia,et al.  Which is a better predictor of plant traits: temperature or precipitation? , 2014 .

[34]  H. Kreft,et al.  Environmental heterogeneity as a universal driver of species richness across taxa, biomes and spatial scales. , 2014, Ecology letters.

[35]  O. Phillips,et al.  Basin-wide variations in Amazon forest nitrogen-cycling characteristics as inferred from plant and soil 15N:14N measurements , 2014 .

[36]  Atul K. Jain,et al.  Global Carbon Budget 2016 , 2016 .

[37]  Stephen Sitch,et al.  Simulated resilience of tropical rainforests to CO2-induced climate change , 2013 .

[38]  P. Högberg,et al.  Nitrogen isotopes link mycorrhizal fungi and plants to nitrogen dynamics. , 2012, The New phytologist.

[39]  R. Menezes,et al.  How much nitrogen is fixed by biological symbiosis in tropical dry forests? 1. Trees and shrubs , 2012, Nutrient Cycling in Agroecosystems.

[40]  N. Hovius,et al.  Geomorphic control on the δ 15 N of mountain forests , 2012 .

[41]  Maryland Sanchez Lacerda,et al.  Floristic and phytosociology in permanent plots of the Atlantic Rainforest along an altitudinal gradient in southeastern Brazil , 2012 .

[42]  J. C. Casagrande,et al.  Characterization of the soil fertility and root system of restinga forests , 2012 .

[43]  S. Higgins,et al.  TRY – a global database of plant traits , 2011, Global Change Biology.

[44]  M. Kohn Carbon isotope compositions of terrestrial C3 plants as indicators of (paleo)ecology and (paleo)climate , 2010, Proceedings of the National Academy of Sciences.

[45]  M. Keller,et al.  Soil-atmosphere exchange of nitrous oxide, methane and carbon dioxide in a gradient of elevation in the coastal Brazilian Atlantic forest , 2010 .

[46]  Edson E. Sano,et al.  Land cover mapping of the tropical savanna region in Brazil , 2010, Environmental monitoring and assessment.

[47]  R. Menezes,et al.  15N natural abundance of non-fixing woody species in the Brazilian dry forest (caatinga) , 2010, Isotopes in environmental and health studies.

[48]  K. Mueller,et al.  Global patterns in leaf 13C discrimination and implications for studies of past and future climate , 2010, Proceedings of the National Academy of Sciences.

[49]  E. Sampaio,et al.  Biological nitrogen fixation in tree legumes of the Brazilian semi-arid caatinga. , 2010 .

[50]  Yadvinder Malhi,et al.  Basin-wide variations in foliar properties of Amazonian forest: phylogeny, soils and climate. , 2009 .

[51]  Josep Peñuelas,et al.  Global patterns of foliar nitrogen isotopes and their relationships with climate, mycorrhizal fungi, foliar nutrient concentrations, and nitrogen availability. , 2009, The New phytologist.

[52]  N. Higuchi,et al.  Nitrogen availability patterns in white-sand vegetations of Central Brazilian Amazon , 2009, Trees.

[53]  J. Ehleringer,et al.  Understanding the Influences of Spatial Patterns on N Availability Within the Brazilian Amazon Forest , 2008, Ecosystems.

[54]  Gregory P Asner,et al.  The biogeochemical heterogeneity of tropical forests. , 2008, Trends in ecology & evolution.

[55]  Wolfgang Lucht,et al.  Tipping elements in the Earth's climate system , 2008, Proceedings of the National Academy of Sciences.

[56]  Valério D. Pillar,et al.  Brazil's neglected biome: The South Brazilian Campos , 2007 .

[57]  Eric A. Davidson,et al.  Recuperation of nitrogen cycling in Amazonian forests following agricultural abandonment , 2007, Nature.

[58]  D. Sigman,et al.  A climate-driven switch in plant nitrogen acquisition within tropical forest communities , 2007, Proceedings of the National Academy of Sciences.

[59]  W. Jetz,et al.  Global patterns and determinants of vascular plant diversity , 2007, Proceedings of the National Academy of Sciences.

[60]  R. Schnur,et al.  Climate-carbon cycle feedback analysis: Results from the C , 2006 .

[61]  B. Emmett,et al.  Regional Assessment of N Saturation using Foliar and Root $$\varvec {\delta}^{\bf 15}{\bf N}$$ , 2006 .

[62]  D. Sigman,et al.  Isotopic evidence for large gaseous nitrogen losses from tropical rainforests. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[63]  J. Berry,et al.  The stable carbon and nitrogen isotopic composition of vegetation in tropical forests of the Amazon Basin, Brazil , 2006 .

[64]  Dali Guo,et al.  Leaf nitrogen and phosphorus stoichiometry across 753 terrestrial plant species in China. , 2005, The New phytologist.

[65]  R. Whittaker,et al.  GLOBAL MODELS FOR PREDICTING WOODY PLANT RICHNESS FROM CLIMATE: DEVELOPMENT AND EVALUATION , 2005 .

[66]  Stephen Porder,et al.  Ground-based and remotely sensed nutrient availability across a tropical landscape. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[67]  P. Camargo,et al.  15N NATURAL ABUNDANCE IN WOODY PLANTS AND SOILS OF CENTRAL BRAZILIAN SAVANNAS (CERRADO) , 2004 .

[68]  M. Tabarelli,et al.  Forest fragmentation, synergisms and the impoverishment of neotropical forests , 2004, Biodiversity & Conservation.

[69]  R. DeFries,et al.  Land‐use choices: balancing human needs and ecosystem function , 2004 .

[70]  Bart Kruijt,et al.  Variation of carbon and nitrogen cycling processes along a topographic gradient in a central Amazonian forest , 2004 .

[71]  Sean C. Thomas,et al.  The worldwide leaf economics spectrum , 2004, Nature.

[72]  Louis S. Santiago,et al.  Coordinated changes in photosynthesis, water relations and leaf nutritional traits of canopy trees along a precipitation gradient in lowland tropical forest , 2004, Oecologia.

[73]  S. Macko,et al.  Natural abundance of 13C and 15N in C3 and C4 vegetation of southern Africa: patterns and implications , 2004 .

[74]  H. Shugart,et al.  Nitrogen cycling in the soil–plant system along a precipitation gradient in the Kalahari sands , 2004 .

[75]  P. Reich,et al.  A handbook of protocols for standardised and easy measurement of plant functional traits worldwide , 2003 .

[76]  A. Austin,et al.  Global patterns of the isotopic composition of soil and plant nitrogen , 2003 .

[77]  N. Grimm,et al.  Towards an ecological understanding of biological nitrogen fixation , 2002 .

[78]  S. Díaz,et al.  Vive la différence: plant functional diversity matters to ecosystem processes , 2001 .

[79]  P. Matson,et al.  Net primary productivity and nutrient cycling across a mesic to wet precipitation gradient in Hawaiian montane forest , 2001, Oecologia.

[80]  L. Patrícia,et al.  Phenology of Atlantic Rain Forest Trees: A Comparative Study1 , 2000 .

[81]  L. Morellato,et al.  Introduction: The Brazilian Atlantic Forest1 , 2000 .

[82]  R. Betts,et al.  Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model , 2000, Nature.

[83]  S. Furian,et al.  Organisation of the soil mantle in tropical southeastern Brazil (Serra do Mar) in relation to landslides processes. , 1999 .

[84]  P. Reich,et al.  Generality of leaf trait relationships: a test across six biomes: Ecology , 1999 .

[85]  H. Shugart,et al.  Insights into nitrogen and carbon dynamics of ectomycorrhizal and saprotrophic fungi from isotopic evidence , 1999, Oecologia.

[86]  P. Vitousek,et al.  Nutrient dynamics on a precipitation gradient in Hawai'i , 1998, Oecologia.

[87]  P. Reich,et al.  From tropics to tundra: global convergence in plant functioning. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[88]  P. Högberg,et al.  Tansley Review No. 95 15 N natural abundance in soil-plant systems. , 1997, The New phytologist.

[89]  J. Ehleringer,et al.  Interseasonal comparison of CO2 concentrations, isotopic composition, and carbon dynamics in an Amazonian rainforest (French Guiana) , 1997, Oecologia.

[90]  E. Sampaio,et al.  Phenology of Caatinga Species at Serra Talhada, PE, Northeastern Brazil , 1997 .

[91]  E. James,et al.  Natural abundance of 15N and 13C in nodulated legumes and other plants in the cerrado and neighbouring regions of Brazil , 1996, Oecologia.

[92]  D. Schimel,et al.  Terrestrial ecosystems and the carbon cycle , 1995 .

[93]  H. Tiessen,et al.  Phosphorus and nitrogen status in soils and vegetation along a toposequence of dystrophic rainforests on the upper Rio Negro , 1994, Oecologia.

[94]  P. Högberg,et al.  15N Abundance of forests is correlated with losses of nitrogen , 1993, Plant and Soil.

[95]  M. F. D. Silva,et al.  Occurrence of nodulation in legume species in the Amazon region of Brazil , 1992 .

[96]  E. Medina,et al.  The canopy effect, carbon isotope ratios and foodwebs in Amazonia , 1991 .

[97]  D. Currie Energy and Large-Scale Patterns of Animal- and Plant-Species Richness , 1991, The American Naturalist.

[98]  T. Heaton,et al.  The 15N/14N ratios of plants in South Africa and Namibia: relationship to climate and coastal/saline environments , 1987, Oecologia.

[99]  David J. Currie,et al.  Large-scale biogeographical patterns of species richness of trees , 1987, Nature.

[100]  T. Sharkey,et al.  Stomatal conductance and photosynthesis , 1982 .

[101]  S. Buol,et al.  Soils of the Tropics and the World Food Crisis , 1975, Science.

[102]  G. Eiten,et al.  The cerrado vegetation of Brazil , 1972, The Botanical Review.

[103]  J. Owen Isotopic Evidence , 2019, Hydromagmatic Processes and Platinum-Group Element Deposits in Layered Intrusions.

[104]  P. Fearnside,et al.  Apresentando o diagnóstico brasileiro de biodiversidade e serviços ecossistêmicos. , 2019 .

[105]  Peter Mann de Toledo,et al.  1º Diagnóstico Brasileiro de Biodiversidade & Serviços Ecossistêmicos , 2019 .

[106]  Rafaela Campostrini Forzza,et al.  Growing knowledge: an overview of Seed Plant diversity in Brazil , 2015 .

[107]  S. Porder,et al.  Linking chronosequences with the rest of the world: predicting soil phosphorus content in denuding landscapes , 2011 .

[108]  S. Kaveri,et al.  Tipping elements in the Earth System , 2010 .

[109]  Gregory P Asner,et al.  Controls over foliar N:P ratios in tropical rain forests. , 2007, Ecology.

[110]  A. Michelsen,et al.  Leaf 15N abundance of subarctic plants provides field evidence that ericoid, ectomycorrhizal and non-and arbuscular mycorrhizal species access different sources of soil nitrogen , 2004, Oecologia.

[111]  P. Minchin,et al.  Stratification of δ13C values of leaves in Amazonian rain forests , 2004, Oecologia.

[112]  Ian J. Wright,et al.  World-wide leaf economics spectrum , 2004 .

[113]  P. Högberg,et al.  15N Abundance of forests is correlated with losses of nitrogen , 2004, Plant and Soil.

[114]  A. Austin,et al.  The 15N natural abundance (d15N) of ecosystem samples reflects measures of water availability , 1999 .

[115]  F. S. Chapin,et al.  The Mineral Nutrition of Wild Plants Revisited: A Re-evaluation of Processes and Patterns , 1999 .

[116]  O. Sala,et al.  Foliar d 15 N is negatively correlated with rainfall along the IGBP transect in Australia , 1999 .

[117]  R. Aerts Nutrient resorption from senescing leaves of perennials: are there general patterns? , 1996 .

[118]  Graham D. Farquhar,et al.  Stable isotopes and plant carbon-water relations. , 1993 .

[119]  P. Sánchez,et al.  Myths and Science about the Chemistry and Fertility of Soils in the Tropics , 1992 .

[120]  D. Richter,et al.  Soil Diversity in the Tropics , 1991 .

[121]  Graham D. Farquhar,et al.  Carbon Isotope Fractionation and Plant Water-Use Efficiency , 1989 .

[122]  J. Ehleringer,et al.  Carbon Isotope Discrimination and Photosynthesis , 1989 .

[123]  Robert L. Sanford,et al.  Nutrient Cycling in Moist Tropical Forest , 1986 .

[124]  T. Dollery,et al.  Stable Isotopes , 1978, Palgrave Macmillan UK.

[125]  F R HENDRICKSON,et al.  Which Is Better? , 2023, Advances in Cosmetic Surgery.