A symmetric convexity measure

A new area-based convexity measure for polygons is described. It has the desirable properties that it is not sensitive to small boundary defects, and it is symmetric with respect to intrusions and protrusions. The measure requires a maximally overlapping convex polygon, and this is efficiently estimated using a genetic algorithm. Examples of the measures application to medical image analysis are shown.

[1]  D. J. Cavicchio,et al.  Adaptive search using simulated evolution , 1970 .

[2]  Urs Ramer,et al.  An iterative procedure for the polygonal approximation of plane curves , 1972, Comput. Graph. Image Process..

[3]  David Avis,et al.  A Linear Algorithm for Finding the Convex Hull of a Simple Polygon , 1979, Inf. Process. Lett..

[4]  Chee-Keng Yap,et al.  A polynomial solution for the potato-peeling problem , 1986, Discret. Comput. Geom..

[5]  Gilbert Syswerda,et al.  Uniform Crossover in Genetic Algorithms , 1989, ICGA.

[6]  Helman I. Stern,et al.  Polygonal entropy: A convexity measure , 1989, Pattern Recognit. Lett..

[7]  D. T. Lee,et al.  Out-of-Roundness Problem Revisited , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[8]  Bernard Chazelle Triangulating a simple polygon in linear time , 1991, Discret. Comput. Geom..

[9]  L. Boxer Computing deviations from convexity in polygons , 1993, Pattern Recognit. Lett..

[10]  Milan Sonka,et al.  Image Processing, Analysis and Machine Vision , 1993, Springer US.

[11]  Milan Sonka,et al.  Image pre-processing , 1993 .

[12]  Gert Vegter,et al.  In handbook of discrete and computational geometry , 1997 .

[13]  Mark de Berg,et al.  Computational geometry: algorithms and applications , 1997 .

[14]  M. Tarr,et al.  Training ‘greeble’ experts: a framework for studying expert object recognition processes , 1998, Vision Research.

[15]  Pearl Y. Wang,et al.  Heuristics for Large Strip Packing Problems with Guillotine Patterns: an Empirical Study , 2001 .

[16]  Paul L. Rosin,et al.  A Convexity Measurement for Polygons , 2002, BMVC.

[17]  C. L. Valenzuela A simple evolutionary algorithm for multi-objective optimization (SEAMO) , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[18]  David I. McLean,et al.  Irregularity index: A new border irregularity measure for cutaneous melanocytic lesions , 2003, Medical Image Anal..

[19]  J. G. Choi,et al.  Dynamic programming approach to optimal vertex selection for polygon-based shape approximation , 2003 .

[20]  Christine L. Mumford Simple Population Replacement Strategies for a Steady-State Multi-objective Evolutionary Algorithm , 2004, GECCO.

[21]  Alexander Kolesnikov,et al.  Optimal algorithm for convexity measure calculation , 2005, IEEE International Conference on Image Processing 2005.

[22]  Christine L. Mumford-Valenzuela A Simple Approach to Evolutionary Multiobjective Optimization , 2005, Evolutionary Multiobjective Optimization.

[23]  David Eppstein,et al.  Asymptotic speed-ups in constructive solid geometry , 1995, Algorithmica.

[24]  Gunilla Borgefors,et al.  An Approximation of the Maximal Inscribed Convex Set of a Digital Object , 2005, ICIAP.