Transmission Spectroscopy for the Warm Sub-Neptune HD 3167c: Evidence for Molecular Absorption and a Possible High-metallicity Atmosphere

We present a transmission spectrum for the warm (500−600 K) sub-Neptune HD 3167c obtained using the Hubble Space Telescope Wide Field Camera 3 infrared spectrograph. We combine these data, which span the 1.125–1.643 μm wavelength range, with broadband transit measurements made using Kepler/K2 (0.6–0.9 μm) and Spitzer/IRAC (4–5 μm). We find evidence for absorption by at least one of H2O, HCN, CO2, and CH4 (Bayes factor 7.4; 2.5σ significance), although the data precision does not allow us to unambiguously discriminate between these molecules. The transmission spectrum rules out cloud-free hydrogen-dominated atmospheres with metallicities ≤100× solar at >5.8σ confidence. In contrast, good agreement with the data is obtained for cloud-free models assuming metallicities >700× solar. However, for retrieval analyses that include the effect of clouds, a much broader range of metallicities (including subsolar) is consistent with the data, due to the degeneracy with cloud-top pressure. Self-consistent chemistry models that account for photochemistry and vertical mixing are presented for the atmosphere of HD 3167c. The predictions of these models are broadly consistent with our abundance constraints, although this is primarily due to the large uncertainties on the latter. Interior structure models suggest that the core mass fraction is >40%, independent of a rock or water core composition, and independent of atmospheric envelope metallicity up to 1000× solar. We also report abundance measurements for 15 elements in the host star, showing that it has a very nearly solar composition.

[1]  J. Fortney,et al.  Tentative Evidence for Water Vapor in the Atmosphere of the Neptune-sized Exoplanet HD 106315c , 2020, The Astronomical Journal.

[2]  J. Christensen-Dalsgaard,et al.  High-precision abundances of elements in solar-type stars , 2020, Astronomy & Astrophysics.

[3]  D. Apai,et al.  Indications for very high metallicity and absence of methane in the eccentric exo-Saturn WASP-117b , 2020, Astronomy & Astrophysics.

[4]  J. Fortney,et al.  Aerosol composition of hot giant exoplanets dominated by silicates and hydrocarbon hazes , 2020, 2005.11939.

[5]  L. Buchhave,et al.  The Hubble Space Telescope PanCET Program: An Optical to Infrared Transmission Spectrum of HAT-P-32Ab , 2020, The Astronomical Journal.

[6]  N. Lewis,et al.  Confirmation of water emission in the dayside spectrum of the ultrahot Jupiter WASP-121b , 2020, Monthly Notices of the Royal Astronomical Society.

[7]  John P. Ahlers,et al.  An Unusual Transmission Spectrum for the Sub-Saturn KELT-11b Suggestive of a Subsolar Water Abundance , 2020, The Astronomical Journal.

[8]  Joseph E. Rodriguez,et al.  The Hubble PanCET Program: Transit and Eclipse Spectroscopy of the Strongly Irradiated Giant Exoplanet WASP-76b , 2020, The Astronomical Journal.

[9]  T. Barman,et al.  Updated Parameters and a New Transmission Spectrum of HD 97658b , 2020, The Astronomical Journal.

[10]  D. Deming,et al.  Optical to Near-infrared Transmission Spectrum of the Warm Sub-Saturn HAT-P-12b , 2020, The Astronomical Journal.

[11]  N. Lewis,et al.  Into the UV: A Precise Transmission Spectrum of HAT-P-41b Using Hubble’s WFC3/UVIS G280 Grism , 2020, The Astronomical Journal.

[12]  M. Deleuil,et al.  Irradiated Ocean Planets Bridge Super-Earth and Sub-Neptune Populations , 2020, The Astrophysical Journal.

[13]  R. Cloutier,et al.  Evolution of the Radius Valley around Low-mass Stars from Kepler and K2 , 2019, The Astronomical Journal.

[14]  M. L'opez-Morales,et al.  Detection of Na, K, and H2O in the hazy atmosphere of WASP-6b , 2019, Monthly Notices of the Royal Astronomical Society.

[15]  G. Montavon,et al.  Machine-learning Inference of the Interior Structure of Low-mass Exoplanets , 2019, The Astrophysical Journal.

[16]  D. Deming,et al.  Abundance measurements of H2O and carbon-bearing species in the atmosphere of WASP-127b confirm its supersolar metallicity , 2019, Monthly Notices of the Royal Astronomical Society.

[17]  D. Ehrenreich,et al.  Transmission Spectroscopy of WASP-79b from 0.6 to 5.0 μm , 2019, The Astronomical Journal.

[18]  D. Deming,et al.  A super-solar metallicity atmosphere for WASP-127b revealed by transmission spectroscopy from HST and Spitzer , 2019, 1911.08859.

[19]  J. Fortney,et al.  The Featureless Transmission Spectra of Two Super-puff Planets , 2019, The Astronomical Journal.

[20]  J. Bean,et al.  A Hubble PanCET Study of HAT-P-11b: A Cloudy Neptune with a Low Atmospheric Metallicity , 2019, The Astronomical Journal.

[21]  J. Laskar,et al.  Nearly polar orbit of the sub-Neptune HD 3167 c , 2019, Astronomy & Astrophysics.

[22]  K. Stevenson,et al.  Analyzing Eight Years of Transiting Exoplanet Observations Using WFC3's Spatial Scan Monitor , 2019, 1910.02073.

[23]  J. Fortney,et al.  Water Vapor and Clouds on the Habitable-zone Sub-Neptune Exoplanet K2-18b , 2019, The Astrophysical Journal.

[24]  J. Winn,et al.  Homogeneous Analysis of Hot Earths: Masses, Sizes, and Compositions , 2019, The Astrophysical Journal.

[25]  Nikole K. Lewis,et al.  The Hubble Space Telescope PanCET Program: Exospheric Mg ii and Fe ii in the Near-ultraviolet Transmission Spectrum of WASP-121b Using Jitter Decorrelation , 2019, The Astronomical Journal.

[26]  Johannes L. Schönberger,et al.  SciPy 1.0: fundamental algorithms for scientific computing in Python , 2019, Nature Methods.

[27]  P. Lavvas,et al.  The Hubble PanCET program: an extensive search for metallic ions in the exosphere of GJ 436 b , 2019, Astronomy & Astrophysics.

[28]  J. Fortney,et al.  A sub-Neptune exoplanet with a low-metallicity methane-depleted atmosphere and Mie-scattering clouds , 2019, Nature Astronomy.

[29]  M. Marley,et al.  An emission spectrum for WASP-121b measured across the 0.8–1.1 μm wavelength range using the Hubble Space Telescope , 2019, Monthly Notices of the Royal Astronomical Society.

[30]  Daniel Apai,et al.  The Exoplanet Population Observation Simulator. II. Population Synthesis in the Era of Kepler , 2019, The Astrophysical Journal.

[31]  T. Henning,et al.  petitRADTRANS: a Python radiative transfer package for exoplanet characterization and retrieval. , 2019, 1904.11504.

[32]  M. Ikoma,et al.  Theoretical Transmission Spectra of Exoplanet Atmospheres with Hydrocarbon Haze: Effect of Creation, Growth, and Settling of Haze Particles. II. Dependence on UV Irradiation Intensity, Metallicity, C/O Ratio, Eddy Diffusion Coefficient, and Temperature , 2019, The Astrophysical Journal.

[33]  T. Komacek,et al.  Vertical Tracer Mixing in Hot Jupiter Atmospheres , 2019, The Astrophysical Journal.

[34]  J. Fortney,et al.  Climate of an ultra hot Jupiter , 2019, Astronomy & Astrophysics.

[35]  H. Lammer,et al.  Close-in Sub-Neptunes Reveal the Past Rotation History of Their Host Stars: Atmospheric Evolution of Planets in the HD 3167 and K2-32 Planetary Systems , 2019, Astrophysical Journal.

[36]  G. Chabrier,et al.  A New Equation of State for Dense Hydrogen–Helium Mixtures , 2019, The Astrophysical Journal.

[37]  A. Bonomo,et al.  Growth model interpretation of planet size distribution , 2018, Proceedings of the National Academy of Sciences.

[38]  J. Fortney,et al.  Connecting Giant Planet Atmosphere and Interior Modeling: Constraints on Atmospheric Metal Enrichment , 2018, The Astrophysical Journal.

[39]  Akash Gupta,et al.  Sculpting the valley in the radius distribution of small exoplanets as a by-product of planet formation: the core-powered mass-loss mechanism. , 2018, Monthly notices of the Royal Astronomical Society.

[40]  G. Chabrier,et al.  Ab initio based equation of state of dense water for planetary and exoplanetary modeling , 2018, Astronomy & Astrophysics.

[41]  D. Deming,et al.  How to Characterize the Atmosphere of a Transiting Exoplanet , 2018, Publications of the Astronomical Society of the Pacific.

[42]  S. Barros,et al.  K2 Targets Observed with SPHERE/VLT: An M4-7 Dwarf Companion Resolved around EPIC 206011496 , 2018, The Astronomical Journal.

[43]  T. A. Lister,et al.  Gaia Data Release 2. Summary of the contents and survey properties , 2018, 1804.09365.

[44]  Brice-Olivier Demory,et al.  Atmospheric reconnaissance of the habitable-zone Earth-sized planets orbiting TRAPPIST-1 , 2018, 1802.02250.

[45]  Miguel de Val-Borro,et al.  The Astropy Project: Building an Open-science Project and Status of the v2.0 Core Package , 2018, The Astronomical Journal.

[46]  T. Barman,et al.  An HST/STIS Optical Transmission Spectrum of Warm Neptune GJ 436b , 2018, 1801.00412.

[47]  Masahiro Ikoma,et al.  Theoretical Transmission Spectra of Exoplanet Atmospheres with Hydrocarbon Haze: Effect of Creation, Growth, and Settling of Haze Particles. I. Model Description and First Results , 2017, 1712.02808.

[48]  Erik Petigura,et al.  An asteroseismic view of the radius valley: stripped cores, not born rocky , 2017, Monthly Notices of the Royal Astronomical Society.

[49]  Nikole K. Lewis,et al.  An ultrahot gas-giant exoplanet with a stratosphere , 2017, Nature.

[50]  Laura Kreidberg,et al.  Trends in Atmospheric Properties of Neptune-size Exoplanets , 2017, 1708.00016.

[51]  Marshall C. Johnson,et al.  The Transiting Multi-planet System HD 3167: A 5.7 M⊕ Super-Earth and an 8.3 M⊕ Mini-Neptune , 2017, 1706.02532.

[52]  R. P. Butler,et al.  Three’s Company: An Additional Non-transiting Super-Earth in the Bright HD 3167 System, and Masses for All Three Planets , 2017, 1706.01892.

[53]  Christoph Mordasini,et al.  Compositional Imprints in Density–Distance–Time: A Rocky Composition for Close-in Low-mass Exoplanets from the Location of the Valley of Evaporation , 2017, 1706.00251.

[54]  James E. Owen,et al.  The Evaporation Valley in the Kepler Planets , 2017, 1705.10810.

[55]  Howard Isaacson,et al.  The California-Kepler Survey. III. A Gap in the Radius Distribution of Small Planets , 2017, 1703.10375.

[56]  David C. Catling,et al.  The Cosmic Shoreline: The Evidence that Escape Determines which Planets Have Atmospheres, and what this May Mean for Proxima Centauri B , 2017, 1702.03386.

[57]  Drake Deming,et al.  Illusion and reality in the atmospheres of exoplanets , 2017, 1701.00493.

[58]  Roxana Lupu,et al.  FORWARD AND INVERSE MODELING OF THE EMISSION AND TRANSMISSION SPECTRUM OF GJ 436B: INVESTIGATING METAL ENRICHMENT, TIDAL HEATING, AND CLOUDS , 2016, 1610.07632.

[59]  Y. Alibert,et al.  A generalized Bayesian inference method for constraining the interiors of super Earths and sub-Neptunes , 2016, 1609.03908.

[60]  J. Brewer,et al.  C/O AND Mg/Si RATIOS OF STARS IN THE SOLAR NEIGHBORHOOD , 2016, 1608.06286.

[61]  Christoph Baranec,et al.  TWO SMALL PLANETS TRANSITING HD 3167 , 2016, 1607.05248.

[62]  J. Valenti,et al.  SPECTRAL PROPERTIES OF COOL STARS: EXTENDED ABUNDANCE ANALYSIS OF 1,617 PLANET-SEARCH STARS , 2016, 1606.07929.

[63]  T. Evans,et al.  DETECTION OF H2O AND EVIDENCE FOR TiO/VO IN AN ULTRA-HOT EXOPLANET ATMOSPHERE , 2016, 1604.02310.

[64]  T. Evans,et al.  A continuum from clear to cloudy hot-Jupiter exoplanets without primordial water depletion , 2015, Nature.

[65]  J. Tennyson,et al.  DETECTION OF AN ATMOSPHERE AROUND THE SUPER-EARTH 55 CANCRI E , 2015, 1511.08901.

[66]  J. Fortney,et al.  THE MASS–METALLICITY RELATION FOR GIANT PLANETS , 2015, 1511.07854.

[67]  Kyle L. Luther,et al.  CHARACTERIZING TRANSITING EXOPLANET ATMOSPHERES WITH JWST , 2015, 1511.05528.

[68]  Kerri Cahoy,et al.  THERMAL EMISSION AND REFLECTED LIGHT SPECTRA OF SUPER EARTHS WITH FLAT TRANSMISSION SPECTRA , 2015, 1511.01492.

[69]  Laura Kreidberg,et al.  batman: BAsic Transit Model cAlculatioN in Python , 2015, 1507.08285.

[70]  B. Benneke,et al.  Strict Upper Limits on the Carbon-to-Oxygen Ratios of Eight Hot Jupiters from Self-Consistent Atmospheric Retrieval , 2015, 1504.07655.

[71]  T. Evans,et al.  A uniform analysis of HD 209458b Spitzer/IRAC light curves with Gaussian process models , 2015, 1504.05942.

[72]  Drake Deming,et al.  SPITZER SECONDARY ECLIPSES OF THE DENSE, MODESTLY-IRRADIATED, GIANT EXOPLANET HAT-P- 20 b ?> USING PIXEL-LEVEL DECORRELATION , 2014, 1411.7404.

[73]  Drake Deming,et al.  Water vapour absorption in the clear atmosphere of a Neptune-sized exoplanet , 2014, Nature.

[74]  A. Vanderburg,et al.  A Technique for Extracting Highly Precise Photometry for the Two-Wheeled Kepler Mission , 2014, 1408.3853.

[75]  L. Rogers MOST 1.6 EARTH-RADIUS PLANETS ARE NOT ROCKY , 2014, 1407.4457.

[76]  D. Hogg,et al.  EXOPLANET POPULATION INFERENCE AND THE ABUNDANCE OF EARTH ANALOGS FROM NOISY, INCOMPLETE CATALOGS , 2014, 1406.3020.

[77]  N. Santos,et al.  Near-infrared transmission spectrum of the warm-uranus GJ 3470b with the Wide Field Camera-3 on the Hubble Space Telescope , 2014, 1405.1056.

[78]  Jacob L. Bean,et al.  HUBBLE SPACE TELESCOPE NEAR-IR TRANSMISSION SPECTROSCOPY OF THE SUPER-EARTH HD 97658B , 2014, 1403.4602.

[79]  Vivien Parmentier,et al.  Pseudo 2D chemical model of hot-Jupiter atmospheres: application to HD 209458b and HD 189733b , 2014, 1403.0121.

[80]  F. Mullally,et al.  The K2 Mission: Characterization and Early Results , 2014, 1402.5163.

[81]  A. Burrows,et al.  MASS-RADIUS RELATIONS AND CORE-ENVELOPE DECOMPOSITIONS OF SUPER-EARTHS AND SUB-NEPTUNES , 2014, 1402.4818.

[82]  A. Merloni,et al.  X-ray spectral modelling of the AGN obscuring region in the CDFS: Bayesian model selection and catalogue , 2014, 1402.0004.

[83]  Kento Masuda,et al.  VERY LOW DENSITY PLANETS AROUND KEPLER-51 REVEALED WITH TRANSIT TIMING VARIATIONS AND AN ANOMALY SIMILAR TO A PLANET–PLANET ECLIPSE EVENT , 2014, 1401.2885.

[84]  Drake Deming,et al.  Clouds in the atmosphere of the super-Earth exoplanet GJ 1214b , 2013, Nature.

[85]  G. Marcy,et al.  THE MASS–RADIUS RELATION FOR 65 EXOPLANETS SMALLER THAN 4 EARTH RADII , 2013, 1312.0936.

[86]  J. Fortney,et al.  UNDERSTANDING THE MASS–RADIUS RELATION FOR SUB-NEPTUNES: RADIUS AS A PROXY FOR COMPOSITION , 2013, 1311.0329.

[87]  D. Deming,et al.  A featureless transmission spectrum for the Neptune-mass exoplanet GJ 436b , 2013, Nature.

[88]  Prasanth H. Nair,et al.  Astropy: A community Python package for astronomy , 2013, 1307.6212.

[89]  J. Moses Chemical kinetics on extrasolar planets , 2013, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[90]  S. Seager,et al.  HOW TO DISTINGUISH BETWEEN CLOUDY MINI-NEPTUNES AND WATER/VOLATILE-DOMINATED SUPER-EARTHS , 2013, 1306.6325.

[91]  T. Barman,et al.  COMPOSITIONAL DIVERSITY IN THE ATMOSPHERES OF HOT NEPTUNES, WITH APPLICATION TO GJ 436b , 2013, The Astrophysical journal.

[92]  Christoph Mordasini,et al.  A FRAMEWORK FOR CHARACTERIZING THE ATMOSPHERES OF LOW-MASS LOW-DENSITY TRANSITING PLANETS , 2013, 1306.4329.

[93]  Tristan Guillot,et al.  BULK COMPOSITION OF GJ 1214b AND OTHER SUB-NEPTUNE EXOPLANETS , 2013, 1305.2629.

[94]  J. Fortney,et al.  THE ROLE OF CORE MASS IN CONTROLLING EVAPORATION: THE KEPLER RADIUS DISTRIBUTION AND THE KEPLER-36 DENSITY DICHOTOMY , 2013, 1305.0269.

[95]  G. Marcy,et al.  A PLATEAU IN THE PLANET POPULATION BELOW TWICE THE SIZE OF EARTH , 2013, 1304.0460.

[96]  James E. Owen,et al.  KEPLER PLANETS: A TALE OF EVAPORATION , 2013, 1303.3899.

[97]  D. Charbonneau,et al.  THE OCCURRENCE RATE OF SMALL PLANETS AROUND SMALL STARS , 2013, 1302.1647.

[98]  Mark Clampin,et al.  INFRARED TRANSMISSION SPECTROSCOPY OF THE EXOPLANETS HD 209458b AND XO-1b USING THE WIDE FIELD CAMERA-3 ON THE HUBBLE SPACE TELESCOPE , 2013, 1302.1141.

[99]  A. Showman,et al.  3D mixing in hot Jupiters atmospheres. I. Application to the day/night cold trap in HD 209458b , 2013, 1301.4522.

[100]  F. Fressin,et al.  THE FALSE POSITIVE RATE OF KEPLER AND THE OCCURRENCE OF PLANETS , 2013, 1301.0842.

[101]  K. Batygin A primordial origin for misalignments between stellar spin axes and planetary orbits , 2012, Nature.

[102]  E. Kerins,et al.  The transiting system GJ1214: high-precision defocused transit observations and a search for evidence of transit timing variation , 2012, 1207.3064.

[103]  D. Saumon,et al.  NEGLECTED CLOUDS IN T AND Y DWARF ATMOSPHERES , 2012, 1206.4313.

[104]  G. Rottman,et al.  Solar Ultraviolet Variability Over Time Periods of Aeronomic Interest , 2012 .

[105]  Sara Seager,et al.  ATMOSPHERIC RETRIEVAL FOR SUPER-EARTHS: UNIQUELY CONSTRAINING THE ATMOSPHERIC COMPOSITION WITH TRANSMISSION SPECTROSCOPY , 2012, 1203.4018.

[106]  Daniel Foreman-Mackey,et al.  emcee: The MCMC Hammer , 2012, 1202.3665.

[107]  J. Fortney,et al.  THE FLAT TRANSMISSION SPECTRUM OF THE SUPER-EARTH GJ1214b FROM WIDE FIELD CAMERA 3 ON THE HUBBLE SPACE TELESCOPE , 2011, 1111.5621.

[108]  Edwin A. Bergin,et al.  THE EFFECTS OF SNOWLINES ON C/O IN PLANETARY ATMOSPHERES , 2011, 1110.5567.

[109]  Howard Isaacson,et al.  The Occurrence and Mass Distribution of Close-in Super-Earths, Neptunes, and Jupiters , 2010, Science.

[110]  R. Redmer,et al.  THERMAL EVOLUTION AND STRUCTURE MODELS OF THE TRANSITING SUPER-EARTH GJ 1214b , 2010, 1010.0277.

[111]  S. Seager,et al.  THREE POSSIBLE ORIGINS FOR THE GAS LAYER ON GJ 1214b , 2009, 0912.3243.

[112]  S. Seager,et al.  A FRAMEWORK FOR QUANTIFYING THE DEGENERACIES OF EXOPLANET INTERIOR COMPOSITIONS , 2009, 0912.3288.

[113]  A. P. Showman,et al.  TRANSMISSION SPECTRA OF THREE-DIMENSIONAL HOT JUPITER MODEL ATMOSPHERES , 2009, 0912.2350.

[114]  J. Fortney,et al.  The Interior Structure, Composition, and Evolution of Giant Planets , 2009, 0912.0533.

[115]  G. Lodato,et al.  Chaotic star formation and the alignment of stellar rotation with disc and planetary orbital axes , 2009, 0909.4255.

[116]  M. Asplund,et al.  The chemical composition of the Sun , 2009, 0909.0948.

[117]  S. Seager,et al.  Ranges of Atmospheric Mass and Composition of Super-Earth Exoplanets , 2008, 0808.1909.

[118]  R. Trotta Bayes in the sky: Bayesian inference and model selection in cosmology , 2008, 0803.4089.

[119]  S. Seager,et al.  Ocean Planet or Thick Atmosphere: On the Mass-Radius Relationship for Solid Exoplanets with Massive Atmospheres , 2007, 0710.4941.

[120]  John D. Hunter,et al.  Matplotlib: A 2D Graphics Environment , 2007, Computing in Science & Engineering.

[121]  Diana Valencia,et al.  Detailed Models of Super-Earths: How Well Can We Infer Bulk Properties? , 2007, 0704.3454.

[122]  M. Marley,et al.  Planetary Radii across Five Orders of Magnitude in Mass and Stellar Insolation: Application to Transits , 2006, astro-ph/0612671.

[123]  Jonathan J. Fortney,et al.  The effect of condensates on the characterization of transiting planet atmospheres with transmission spectroscopy , 2005, astro-ph/0509292.

[124]  Gary J. Melnick,et al.  In-flight performance and calibration of the Infrared Array Camera (IRAC) for the Spitzer Space Telescope , 2004, SPIE Astronomical Telescopes + Instrumentation.

[125]  M. Couture,et al.  HIRES: the high-resolution echelle spectrometer on the Keck 10-m Telescope , 1994, Astronomical Telescopes and Instrumentation.

[126]  S. L. Thompson ANEOS analytic equations of state for shock physics codes input manual , 1990 .

[127]  K. Horne,et al.  AN OPTIMAL EXTRACTION ALGORITHM FOR CCD SPECTROSCOPY. , 1986 .

[128]  B. Brewer Nested Sampling , 2022, The SAGE Encyclopedia of Research Design.

[129]  J. Fortney,et al.  Climate of an ultra hot Jupiter Spectroscopic phase curve of WASP-18b with HST/WFC3 , 2019 .

[130]  S. P. Littlefair,et al.  THE ASTROPY PROJECT: BUILDING AN INCLUSIVE, OPEN-SCIENCE PROJECT AND STATUS OF THE V2.0 CORE PACKAGE , 2018 .

[131]  R. Kurucz ATLAS9 Stellar Atmosphere Programs and 2 km/s grid. , 1993 .