A polynomial case of the parsimony haplotyping problem

The parsimony haplotyping problem was shown to be NP-hard when each genotype had k= =0 ambiguous positions.

[1]  J. V. Moran,et al.  Initial sequencing and analysis of the human genome. , 2001, Nature.

[2]  Dan Gusfield,et al.  Inference of Haplotypes from Samples of Diploid Populations: Complexity and Algorithms , 2001, J. Comput. Biol..

[3]  Timothy B. Stockwell,et al.  The Sequence of the Human Genome , 2001, Science.

[4]  Shibu Yooseph,et al.  Haplotyping as Perfect Phylogeny: A Direct Approach , 2003, J. Comput. Biol..

[5]  Michael R. Fellows,et al.  Parameterized Complexity , 1998 .

[6]  Richard M. Karp,et al.  A n^5/2 Algorithm for Maximum Matchings in Bipartite Graphs , 1971, SWAT.

[7]  I. Heller,et al.  14 . An Extension of a Theorem of Dantzig’s , 1957 .

[8]  D. G. Eld A Practical Algorithm for Optimal Inference of Haplotypes from Diploid Populations , 2000 .

[9]  Daniel G. Brown,et al.  A New Integer Programming Formulation for the Pure Parsimony Problem in Haplotype Analysis , 2004, WABI.

[10]  Dan Gusfield,et al.  Haplotype Inference by Pure Parsimony , 2003, CPM.

[11]  R. Karp,et al.  Efficient reconstruction of haplotype structure via perfect phylogeny. , 2002, Journal of bioinformatics and computational biology.

[12]  Giuseppe Lancia,et al.  Haplotyping Populations by Pure Parsimony: Complexity of Exact and Approximation Algorithms , 2004, INFORMS J. Comput..

[13]  A. Chakravarti It's raining SNPs, hallelujah? , 1998, Nature Genetics.

[14]  Vijay V. Vazirani,et al.  Approximation Algorithms , 2001, Springer Berlin Heidelberg.

[15]  A. Tucker,et al.  Linear Inequalities And Related Systems , 1956 .