An introduction to full waveform inversion

Full waveform inversion (FWI) is a highresolution seismic imaging technique that is based on using the entire content of seismic traces for extracting physical parameters of the medium sampled by seismic waves. The widespread strategy of seismic imaging, the single scattering formulation, at the core of FWI, assumes no prior scale in the model description. Each unexplained residual data sample at receivers for one source is assumed to come from any point of the medium, and only the summation over sources and receivers helps in locating medium property anomalies, regardless of what type of phase is involved. This pixel-oriented perturbation leads to the local optimization approach, which is a linearized differential approach based on the Newton equation. For a least-squares misfit function, there are both the gradient vector and Hessian matrix, in addition to approximations that can be considered for the related Newton equation. The forward problem of the wave propagation, used thousands of times during optimization, should be efficient, and these equations are expressed either as a firstorder hyperbolic system of velocity-stress or as a second-order hyperbolic system of displacement (or velocity) only, by using a self-adjoint formulation in both cases. Gradient vectors are built as a zero-lag crosscorrelation in time between incident and adjoint wavefields with forward and backward patterns and also could be used for obtaining Hessian-matrix approximations. Resolution and uncertainties are relevant, although the actual state of the art does not provide meaningful estimation of these quantities: the FWI remains a deterministic approach at this time. An examplary North Sea data set from the Valhall reservoir illustrates the successful story for high-resolution imaging based on datadriven components, with paleorivers stored in sediments, imprints of glaciers in the bedrock, and gas clouds at different scales in the image. Alternative sources of information on the medium, such as sonic logs and geologic interpretation, are illustrated through a model-driven component of the misfit function. Although methods can be used to increase the speed of the workflow, they are quite costly. The multiparameter reconstruction, which is mandatory for elastic FWI, starts to be feasible if one improves the Hessian-matrix influence. Thus, FWI is becoming a mature strategy for high-resolution seismic imaging.

[1]  Heiner Igel,et al.  Accelerated 3-D full-waveform inversion using simultaneously encoded sources in the time domain: application to Valhall ocean-bottom cable data , 2013 .

[2]  B. Kennett,et al.  Subspace methods for large inverse problems with multiple parameter classes , 1988 .

[3]  Brittany D. Froese,et al.  Application of the Wasserstein metric to seismic signals , 2013, 1311.4581.

[4]  A. Baumstein POCS-based geophysical constraints in multi-parameter Full Wavefield Inversion , 2013 .

[5]  J. Krebs,et al.  Fast full-wavefield seismic inversion using encoded sources , 2009 .

[6]  Biondo Biondi,et al.  Tomographic Full Waveform Inversion: Practical and Computationally Feasible Approach , 2012 .

[7]  E. Candès,et al.  The curvelet representation of wave propagators is optimally sparse , 2004, math/0407210.

[8]  Michael A. Saunders,et al.  Algorithm 583: LSQR: Sparse Linear Equations and Least Squares Problems , 1982, TOMS.

[9]  Ludovic Métivier,et al.  Acoustic Multi-Parameter FWI for the Reconstruction of P-Wave Velocity, Density and Attenuation: Preconditioned Truncated Newton Approach , 2015 .

[10]  Mark W. Schmidt,et al.  Hybrid Deterministic-Stochastic Methods for Data Fitting , 2011, SIAM J. Sci. Comput..

[11]  William W. Symes,et al.  Migration velocity analysis and waveform inversion , 2008 .

[12]  Changsoo Shin,et al.  Frequency-Domain Elastic Full Waveform Inversion Using the New Pseudo-Hessian Matrix: Experience of Elastic Marmousi-2 Synthetic Data , 2008 .

[13]  A. Devaney Geophysical Diffraction Tomography , 1984, IEEE Transactions on Geoscience and Remote Sensing.

[14]  Peter Mora Inversion = Migration + Tomography , 1988, Shell Conference.

[15]  René-Édouard Plessix,et al.  A parametrization study for surface seismic full waveform inversion in an acoustic vertical transversely isotropic medium , 2011 .

[16]  A. Tarantola Inverse problem theory : methods for data fitting and model parameter estimation , 1987 .

[17]  Paul Sava,et al.  A deconvolution‐based objective function for wave‐equation inversion , 2011 .

[18]  D. J. Verschuur,et al.  Joint Migration Inversion, Imaging Including All Multiples with Automatic Velocity Update , 2013 .

[19]  Yunseok Choi,et al.  Taming waveform inversion non‐linearity through phase unwrapping of the model and objective functions , 2012 .

[20]  Z. Heilmann,et al.  CRS-stack-based seismic imaging considering top-surface topography , 2006 .

[21]  Carl Tape,et al.  An automated time-window selection algorithm for seismic tomography , 2009 .

[22]  Olav I. Barkved,et al.  Valhall Field - Still on Plateau after 20 Years of Production , 2003 .

[23]  Dave Hale,et al.  Wave-equation reflection traveltime inversion with dynamic warping and full-waveform inversion , 2013 .

[24]  Roel Snieder,et al.  Retrieving both the impedance contrast and background velocity: A global strategy for the seismic reflection problem , 1989 .

[25]  Ru-Shan Wu,et al.  Multiple scattering and energy transfer of seismic waves - separation of scattering effect from intrinsic attenuation - I. Theoretical modelling , 1985 .

[26]  C. Thurber,et al.  Theory and Observations – Seismic Tomography and Inverse Methods , 2007 .

[27]  J. Nocedal Updating Quasi-Newton Matrices With Limited Storage , 1980 .

[28]  A. Tarantola LINEARIZED INVERSION OF SEISMIC REFLECTION DATA , 1984 .

[29]  Li-Yun Fu,et al.  Two effective approaches to reduce data storage in reverse time migration , 2013, Comput. Geosci..

[30]  Z. Heilmann,et al.  CRS‐stack‐based residual static correction , 2006 .

[31]  G. Chavent Identification of functional parameters in partial differential equations , 1974 .

[32]  H. Calandra,et al.  Estimating the Background Velocity Model with the Normalized Integration Method , 2013 .

[33]  Denes Vigh,et al.  3D prestack plane-wave, full-waveform inversion , 2008 .

[34]  Emanuele Casarotti,et al.  Forward and adjoint simulations of seismic wave propagation on fully unstructured hexahedral meshes , 2011 .

[35]  Felix J. Herrmann,et al.  Fast Uncertainty Quantification for 2D Full-waveform Inversion with Randomized Source Subsampling , 2014 .

[36]  Mark Noble,et al.  Nonlinear elastic waveform inversion of land seismic reflection data , 1992 .

[37]  S. Nash A survey of truncated-Newton methods , 2000 .

[38]  Jon F. Claerbout,et al.  Multidimensional recursive filter preconditioning in geophysical estimation problems , 2003 .

[39]  Romain Brossier,et al.  Full waveform inversion of diving & reflected waves for velocity model building with impedance inversion based on scale separation , 2015 .

[40]  Ludovic Métivier,et al.  Full waveform inversion and the truncated Newton method: quantitative imaging of complex subsurface structures , 2014 .

[41]  Romain Brossier,et al.  Regularized seismic full waveform inversion with prior model information , 2013 .

[42]  Jean Virieux,et al.  Two-Dimensional Asymptotic Iterative Elastic Inversion , 1991 .

[43]  Lijian Tan,et al.  Time-reversal checkpointing methods for RTM and FWI , 2012 .

[44]  Dmitry Borisov,et al.  Three-dimensional elastic full waveform inversion in a marine environment using multicomponent ocean-bottom cables: a synthetic study , 2015 .

[45]  James Martin,et al.  A Stochastic Newton MCMC Method for Large-Scale Statistical Inverse Problems with Application to Seismic Inversion , 2012, SIAM J. Sci. Comput..

[46]  K. Aki,et al.  Multiple scattering and energy transfer of seismic waves—Separation of scattering effect from intrinsic attenuation II. Application of the theory to Hindu Kush region , 1988 .

[47]  Kristopher A. Innanen,et al.  Seismic AVO and the inverse Hessian in precritical reflection full waveform inversion , 2014 .

[48]  Guy Chavent,et al.  Waveform Inversion of Reflection Seismic Data for Kinematic Parameters by Local Optimization , 1998, SIAM J. Sci. Comput..

[49]  Gerard T. Schuster,et al.  Theory of multisource crosstalk reduction by phase-encoded statics , 2011, Geophysical Journal International.

[50]  Bernard Giroux,et al.  3D frequency-domain finite-difference viscoelastic-wave modeling using weighted average 27-point operators with optimal coefficients , 2014 .

[51]  A. Tarantola Inversion of seismic reflection data in the acoustic approximation , 1984 .

[52]  G. Schuster,et al.  Least-squares migration of incomplete reflection data , 1999 .

[53]  Pengliang Yang,et al.  A review on the systematic formulation of 3-D multiparameter full waveform inversion in viscoelastic medium , 2016 .

[54]  L. Guasch,et al.  Adaptive Waveform Inversion - FWI Without Cycle Skipping - Theory , 2014 .

[55]  R. Plessix,et al.  Full waveform inversion and distance separated simultaneous sweeping: a study with a land seismic data set , 2012 .

[56]  Geir Evensen,et al.  The ensemble Kalman filter for combined state and parameter estimation: MONTE CARLO TECHNIQUES FOR DATA ASSIMILATION IN LARGE SYSTEMS , 2009 .

[57]  Gregory Beylkin,et al.  A new slant on seismic imaging: Migration and integral geometry , 1987 .

[58]  Wim A. Mulder,et al.  Exploring some issues in acoustic full waveform inversion , 2008 .

[59]  Guy Chavent,et al.  Migration‐based traveltime waveform inversion of 2-D simple structures: A synthetic example , 2001 .

[60]  Reinhard Nabben,et al.  Algebraic Multilevel Krylov Methods , 2009, SIAM J. Sci. Comput..

[61]  everse time migration with optimal checkpointing illiam , 2007 .

[62]  C. Shin,et al.  Improved amplitude preservation for prestack depth migration by inverse scattering theory , 2001 .

[63]  Antoine Guitton,et al.  Constrained full-waveform inversion by model reparameterization1 , 2012 .

[64]  J. Tromp,et al.  Misfit functions for full waveform inversion based on instantaneous phase and envelope measurements , 2011 .

[65]  P. Sava,et al.  A Comparison of Shot-encoding Schemes For Wave-equation Migration , 2011 .

[66]  R. Gerhard Pratt,et al.  Efficient waveform inversion and imaging: A strategy for selecting temporal frequencies , 2004 .

[67]  Robert G. Clapp Reverse time migration : Saving the boundaries , 2009 .

[68]  Andreas Griewank,et al.  Algorithm 799: revolve: an implementation of checkpointing for the reverse or adjoint mode of computational differentiation , 2000, TOMS.

[69]  Ludovic Métivier,et al.  Computationally efficient three-dimensional acoustic finite-difference frequency-domain seismic modeling in vertical transversely isotropic media with sparse direct solver , 2014 .

[70]  Laurent Demanet,et al.  Matrix probing: A randomized preconditioner for the wave-equation Hessian , 2011, 1101.3615.

[71]  Imaging of discontinuities in nonlinear 3-D seismic in-version , 1990 .

[72]  B. Kennett,et al.  Inversion for multiple parameter classes , 1998 .

[73]  Felix J. Herrmann,et al.  Randomized sampling and sparsity: Getting more information from fewer samples , 2010 .

[74]  N. Bleistein On the imaging of reflectors in the earth , 1987 .

[75]  Olav I. Barkved,et al.  Thematic Set: Full waveform inversion: the next leap forward in imaging at Valhall , 2010 .

[76]  Andreas Fichtner,et al.  Resolution analysis in full waveform inversion , 2011 .

[77]  R. Plessix,et al.  Multiparameter waveform inversion of a large wide-azimuth low-frequency land data set in Oman , 2014 .

[78]  M. Warner,et al.  Anisotropic 3D full-waveform inversion , 2013 .

[79]  D. Komatitsch,et al.  The Spectral-Element Method, Beowulf Computing, and Global Seismology , 2002, Science.

[80]  Andreas Griewank,et al.  Achieving logarithmic growth of temporal and spatial complexity in reverse automatic differentiation , 1992 .

[81]  Ludovic Métivier,et al.  The SEISCOPE optimization toolbox: A large-scale nonlinear optimization library based on reverse communication , 2016 .

[82]  Mark Noble,et al.  Robust elastic nonlinear waveform inversion: Application to real data , 1990 .

[83]  G. Schuster,et al.  Resolution limits for wave equation imaging , 2014 .

[84]  Peter Hubral,et al.  An Introduction to the Common Reflection Surface Stack , 1998 .

[85]  Felix J. Herrmann,et al.  Seismic Waveform Inversion by Stochastic Optimization , 2011 .

[86]  William W. Symes,et al.  Computational Strategies For Reverse-time Migration , 2008 .

[87]  Ludovic Métivier,et al.  Full Waveform Inversion and the Truncated Newton Method , 2013, SIAM J. Sci. Comput..

[88]  Paul Sava,et al.  Offset and angle-domain common image-point gathers for shot-profile migration , 2002 .

[89]  O. Ghattas,et al.  A Newton-CG method for large-scale three-dimensional elastic full-waveform seismic inversion , 2008 .

[90]  J. Virieux,et al.  Measuring the misfit between seismograms using an optimal transport distance: application to full waveform inversion , 2016 .

[91]  Jeroen Tromp,et al.  Seismic structure of the European upper mantle based on adjoint tomography , 2015 .

[92]  Fang Liu,et al.  Clarifying the underlying and fundamental meaning of the approximate linear inversion of seismic data , 2009 .

[93]  Wim A. Mulder,et al.  A correlation-based misfit criterion for wave-equation traveltime tomography , 2010 .