Gel swelling theories: the classical formalism and recent approaches

In this work, the classical theory of polymer/polyelectrolyte gel swelling is reviewed. This formalism is easy to understand and has been widely applied to gels and microgel particles. Nevertheless, its limitations and obscure aspects should be known before use. The case of temperature-sensitive gels is discussed in some detail because it deserves particular clarification. The application to experimental swelling data (of both gels and microgels) is also reviewed. In this way, strengths and weaknesses of this approach can be elucidated. Moreover, other formalisms are also outlined. Many of them are inspired by the classical one. Their improvements are briefly commented in this case. Others are based on different grounds.

[1]  P. Flory,et al.  Statistical Mechanics of Cross‐Linked Polymer Networks I. Rubberlike Elasticity , 1943 .

[2]  A. Khokhlov Swelling and collapse of polymer networks , 1980 .

[3]  G. Pollack,et al.  The Influence of Counterion Type and Temperature on Flory‐Huggins Binary Interaction Parameter in Polyelectrolyte Hydrogels , 2009 .

[4]  Toyoichi Tanaka,et al.  Equilibrium swelling properties of polyampholytic hydrogels , 1996 .

[5]  J. Oh,et al.  Liquid-liquid equilibria for binary polymer solutions from modified double-lattice model , 1998 .

[6]  J. Prausnitz,et al.  Molecular thermodynamics for volume-change transitions in temperature-sensitive polymer gels , 1998 .

[7]  Ö. Pekcan,et al.  The Role of Pyranine in Characterization of PAAm-κC Composites by Using Fluorescence Technique , 2011, Journal of Fluorescence.

[8]  G. Gerlach,et al.  Modeling and simulation of pH-sensitive hydrogels , 2011 .

[9]  W. Kauzmann Some factors in the interpretation of protein denaturation. , 1959, Advances in protein chemistry.

[10]  T. Karino,et al.  Microstructure of N-isopropylacrylamide-acrylic acid copolymer gels having different spatial configurations of weakly charged groups , 2007 .

[11]  A. Fernández-Nieves,et al.  Macroscopically probing the entropic influence of ions: deswelling neutral microgels with salt. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[12]  M. Muthukumar,et al.  Theory of counter-ion condensation on flexible polyelectrolytes: adsorption mechanism. , 2004, The Journal of chemical physics.

[13]  M. Zrínyi,et al.  Kinetics of volume change of poly(succinimide) gels during hydrolysis and swelling. , 2010, Physical chemistry chemical physics : PCCP.

[14]  O. Güven,et al.  Equilibrium swelling behavior of pH‐ and temperature‐sensitive poly(N‐vinyl 2‐pyrrolidone‐g‐citric acid) polyelectrolyte hydrogels , 2000 .

[15]  Honglai Liu,et al.  A molecular thermodynamic model for the swelling of thermo-sensitive hydrogels , 2008 .

[16]  T. A. Hatton,et al.  Thermodynamics of temperature-sensitive polyether-modified poly(acrylic acid) microgels. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[17]  Ö. Pekcan,et al.  In situ fluorescence study of swelling, sorption and desorption processes in and out of PAAm gels , 2008 .

[18]  K. Dušek,et al.  The photoelastic behaviour and small-angle x-ray scattering of ionized gels of copolymers of 2-hydroxyethyl methacrylate with methacrylic acid , 1980 .

[19]  M. Ilavský,et al.  Deformational, swelling, and potentiometric behavior of ionized poly(methacrylic acid) gels. II. Experimental results , 1975 .

[20]  B. Eichinger,et al.  Critical experimental test of the Flory-Rehner theory of swelling , 1988 .

[21]  K. Dušek Responsive Gels: Volume Transitions II , 1993 .

[22]  D. Needham,et al.  Investigation of the Swelling Response and Loading of Ionic Microgels with Drugs and Proteins: The Dependence on Cross-Link Density , 1999 .

[23]  Herbert H. Hooper,et al.  Swelling equilibria for positively ionized polyacrylamide hydrogels , 1990 .

[24]  Sang‐Chul Jung,et al.  The effects of interaction energy on the volume phase transition of N-isopropylacrylamide-co-N-isopropylmethacrylamide nano-sized gel particles: Applicability of molecular simulation technique , 2009 .

[25]  Gil C. Claudio,et al.  Comparison of a hydrogel model to the Poisson-Boltzmann cell model. , 2009, The Journal of chemical physics.

[26]  Juan J. de Pablo,et al.  Nonlinear Effects in the Nanophase Segregation of Polyelectrolyte Gels , 2009 .

[27]  Kurt Kremer,et al.  Swelling of polyelectrolyte networks. , 2005, The Journal of chemical physics.

[28]  C. Han,et al.  pH and salt concentration dependence of the microstructure of poly(N‐isopropylacrylamide‐co‐acrylic acid) gels , 1996 .

[29]  S. Hirotsu,et al.  Softening of bulk modulus and negative Poisson's ratio near the volume phase transition of polymer gels , 1991 .

[30]  Martin J. Snowden,et al.  The preparation, characterisation and applications of colloidal microgels , 1995 .

[31]  M. Shibayama,et al.  Simple Scaling Rules on Swollen and Shrunken Polymer Gels , 1997 .

[32]  I. Sanchez,et al.  Hydrogen bonding in fluids: an equation-of-state approach , 1991 .

[33]  Y. Yagcı,et al.  Swelling and drying kinetics of polytetrahydrofuran and polytetrahydrofuran–poly (methyl methacrylate) gels: A photon transmission study , 2003 .

[34]  S. Shenoy,et al.  A simple model for the swelling of polymer networks , 1993 .

[35]  S. Prager,et al.  Thermodynamic predictions of volume changes in temperature-sensitive gels. 2. Experiments , 1990 .

[36]  A. Fernández-Nieves,et al.  Coupled deswelling of multiresponse microgels. , 2008, The journal of physical chemistry. B.

[37]  M. Quesada-Pérez,et al.  Soft nanoparticles (thermo-responsive nanogels and bicelles) with biotechnological applications: from synthesis to simulation through colloidal characterization , 2011 .

[38]  M. Muthukumar,et al.  Dynamic light scattering studies of ionic and nonionic polymer gels with continuous and discontinuous volume transitions , 2010 .

[39]  Ö. Pekcan,et al.  Temperature effect on gel swelling: a fast transient fluorescence study , 2001 .

[40]  Sang‐Chul Jung,et al.  Reentrant swelling behavior of thermosensitive N-isopropylacrylamide nano-sized gel particles , 2009 .

[41]  A. Fernández-Nieves,et al.  Charge Controlled Swelling of Microgel Particles , 2000 .

[42]  Zhibing Hu,et al.  Interparticle Potential and the Phase Behavior of Temperature-Sensitive Microgel Dispersions , 2003 .

[43]  J. Pablo,et al.  Simulation of swelling of model polymeric gels by subcritical and supercritical solvents , 1999 .

[44]  K. Dušek,et al.  Deformational, swelling, and potentiometric behavior of ionized poly(methacrylic acid) gels. I. Theory , 1975 .

[45]  Hua Li,et al.  A novel multiphysic model for simulation of swelling equilibrium of ionized thermal-stimulus responsive hydrogels , 2005 .

[46]  R. Koningsveld,et al.  Liquid-Liquid Phase Separation in Multicomponent Polymer Systems. X. Concentration Dependence of the Pair-Interaction Parameter in the System Cyclohexane-Polystyrene , 1971 .

[47]  M. O. Cruz Electrostatic control of self-organization: the role of charge gradients in heterogeneous media , 2008 .

[48]  J. Pablo,et al.  Study of volume phase transitions in polymeric nanogels by theoretically informed coarse-grained simulations , 2011 .

[49]  J. Prausnitz,et al.  Effect of Initial Total Monomer Concentration on the Swelling Behavior of Cationic Acrylamide-Based Hydrogels , 1994 .

[50]  U. Gasser,et al.  Deswelling Microgel Particles Using Hydrostatic Pressure , 2009 .

[51]  M. O. D. L. Cruz,et al.  Control of Nanophases in Polyelectrolyte Gels by Salt Addition , 2010 .

[52]  Toyoichi Tanaka,et al.  Volume transition in a gel driven by hydrogen bonding , 1991, Nature.

[53]  T. Karino,et al.  pH Dependence of Macroscopic Swelling and Microscopic Structures for Thermo/pH-Sensitive Gels with Different Charge Distributions , 2008 .

[54]  K. Dušek,et al.  Deformational, swelling, and potentiometric behavior of ionized gels of 2‐hydroxyethyl methacrylate–methacrylic acid copolymers , 1979 .

[55]  Z. Suo,et al.  Poroelastic swelling kinetics of thin hydrogel layers: comparison of theory and experiment , 2010 .

[56]  Miroslava Dušková-Smrčková,et al.  Network structure formation during crosslinking of organic coating systems , 2000 .

[57]  A. Fernández-Nieves,et al.  Salt effects over the swelling of ionized mesoscopic gels , 2001 .

[58]  A. Lele,et al.  Predictions of thermoreversible volume phase transitions in copolymer gels by lattice-fluid-hydrogen-bond theory , 1997 .

[59]  F. E. Karasz,et al.  Lower critical solution temperature behavior in polymer blends: compressibility and directional-specific interactions , 1984 .

[60]  Toyoichi Tanaka,et al.  Swelling of Ionic Gels : Quantitative Performance of the Donnan Theory , 1984 .

[61]  P. Flory,et al.  STATISTICAL MECHANICS OF CROSS-LINKED POLYMER NETWORKS II. SWELLING , 1943 .

[62]  Zhigang Suo,et al.  A theory of constrained swelling of a pH-sensitive hydrogel†‡ , 2010 .

[63]  D. J. Montgomery,et al.  The physics of rubber elasticity , 1949 .

[64]  R. Pelton,et al.  Temperature-sensitive aqueous microgels. , 2000, Advances in colloid and interface science.

[65]  B. Erman,et al.  Critical phenomena and transitions in swollen polymer networks and in linear macromolecules , 1986 .

[66]  T. Hellweg,et al.  Responsive P(NIPAM-co-NtBAM) microgels: Flory–Rehner description of the swelling behaviour , 2010 .

[67]  R. Bansil,et al.  Swelling equilibria of ionized poly(methacrylic acid) gels in the absence of salt , 1989 .

[68]  Xiaohu Xia,et al.  Formation and Volume Phase Transition of Hydroxypropyl Cellulose Microgels in Salt Solution , 2003 .

[69]  P. Flory,et al.  Relationship of the Second Virial Coefficient to Polymer Chain Dimensions and Interaction Parameters , 1957 .

[70]  Toyoichi Tanaka,et al.  Kinetics of swelling of gels , 1979 .

[71]  Hua Li,et al.  Multiphysics modeling of responsive characteristics of ionic-strength-sensitive hydrogel , 2010, Biomedical microdevices.

[72]  Honglai Liu,et al.  A new molecular thermodynamic model for multicomponent Ising lattice. , 2006, The Journal of chemical physics.

[73]  J. Prausnitz,et al.  Statistical thermodynamics of liquid mixtures: A new expression for the excess Gibbs energy of partly or completely miscible systems , 1975 .

[74]  J. Prausnitz,et al.  Thermodynamics of aqueous systems containing hydrophilic polymers or gels , 1989 .

[75]  T. L. Hill,et al.  An Introduction to Statistical Thermodynamics , 1960 .

[76]  Nikolaos A. Peppas,et al.  Hydrogels and drug delivery , 1997 .

[77]  Nicholas A. Peppas,et al.  Equilibrium swelling behavior of pH-sensitive hydrogels , 1991 .

[78]  A. Fernández-Nieves,et al.  Structural modifications in the swelling of inhomogeneous microgels by light and neutron scattering. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[79]  Henry S. Frank,et al.  Free Volume and Entropy in Condensed Systems III. Entropy in Binary Liquid Mixtures; Partial Molal Entropy in Dilute Solutions; Structure and Thermodynamics in Aqueous Electrolytes , 1945 .

[80]  Ö. Pekcan,et al.  Studies on Drying and Swelling of PAAm-NIPA Composites in Various Compositions , 2011 .

[81]  K. Otake,et al.  A new model for the thermally induced volume phase transition of gels , 1989 .

[82]  S. Varghese,et al.  Designing new thermoreversible gels by molecular tailoring of hydrophilic-hydrophobic interactions , 2000 .

[83]  E. Dufresne,et al.  Mechanical properties of individual microgel particles through the deswelling transition , 2009 .

[84]  Thermodynamic predictions of volume changes in temperature-sensitive gels. 1. theory , 1990 .

[85]  Toyoichi Tanaka,et al.  Volume‐phase transitions of ionized N‐isopropylacrylamide gels , 1987 .

[86]  M. Zrínyi,et al.  Swelling kinetics of anisotropic filler loaded PDMS networks. , 2006, Physical chemistry chemical physics : PCCP.

[87]  M. Shibayama,et al.  Gel-size dependence of temperature-induced microphase separation in weakly-charged polymer gels , 2007 .

[88]  Y. Yılmaz Transition between collapsed state phases and the critical swelling of a hydrogen bonding gel: poly(methacrylic acid-co-dimethyl acrylamide). , 2007, The Journal of chemical physics.

[89]  F. Horkay,et al.  Effect of cross-links on the swelling equation of state: polyacrylamide hydrogels , 1989 .

[90]  I. Szleifer,et al.  Molecular Theory of Weak Polyelectrolyte Gels: The Role of pH and Salt Concentration , 2011 .

[91]  Ö. Pekcan,et al.  Photon transmission technique for monitoring swelling of acrylamide gels formed with various crosslinker contents , 2001 .

[92]  A. Fernández-Nieves,et al.  Osmotic de-swelling of ionic microgel particles , 2003 .

[93]  K. Dušek,et al.  The photoelastic behaviour of swollen networks of polymethacrylic acid , 1980 .

[94]  Shao-Tang Sun,et al.  Phase transitions in ionic gels , 1980 .

[95]  D. V. Kuznetsov,et al.  Quantitative theory of the globule-to-coil transition. 1. Link density distribution in a globule and its radius of gyration , 1992 .

[96]  Jeffrey Kovac,et al.  Modified Gaussian Model for Rubber Elasticity , 1978 .

[97]  J. Prausnitz,et al.  Representation of vapor–liquid and liquid–liquid equilibria for binary systems containing polymers: Applicability of an extended flory–huggins equation , 1993 .

[98]  S. Enders,et al.  Thermodynamics of aqueous solutions containing poly (N-isopropylacrylamide) , 2011 .

[99]  Yong Li,et al.  Kinetics of swelling and shrinking of gels , 1990 .