Electron Cyclotron Heating for W7-X: Physics and Technology

The Wendelstein 7X (W7-X) stellarator (R = 5.5 m, a = 0.55 m, B < 3.0 T), which at present is being built at Max-Planck-Institut für Plasmaphysik, Greifswald, aims at demonstrating the inherent steady-state capability of stellarators at reactor-relevant plasma parameters. A 10-MW electron cyclotron resonance heating (ECRH) plant with continuous-wave (cw) capability is under construction to meet the scientific objectives. The physics background of the different heating and current drive scenarios is presented. The expected plasma parameters are calculated for different transport assumptions. A newly developed ray-tracing code is used to calculate selected reference scenarios and optimize the electron cyclotron launcher and in-vessel structure. Examples are discussed, and the technological solutions for optimum wave coupling are presented. The ECRH plant consists of ten radio-frequency (rf) modules with 1 MW of power each at 140 GHz. The rf beams are transmitted to the W7-X torus (typically 60 m) via two open multibeam mirror lines with a power-handling capability, which would already satisfy the ITER requirements (24 MW). Integrated full-power, cw tests of two rf modules (gyrotrons and the related transmission line sections) are reported, and the key features of the gyrotron and transmission line technology are presented. As the physics and technology of ECRH for both W7-X and ITER have many similarities, test results from the W7-X ECRH may provide valuable input for the ITER-ECRH plant.

[1]  ECRH-Group,et al.  Electron Bernstein Wave Heating and Emission via the OXB Process on W7-AS , 1999 .

[2]  G. Dammertz,et al.  A high-efficiency quasi-optical mode converter for a 140-GHz 1-MW CW gyrotron , 2005, IEEE Transactions on Electron Devices.

[3]  W. Kasparek,et al.  A grating coupler for in-situ alignment of a Gaussian Beam-principle, design, and low-power test , 2004, IEEE Transactions on Antennas and Propagation.

[4]  L. Giannone,et al.  Radiation power profiles and density limit with a divertor in the W7-AS stellarator , 2002 .

[5]  F. Sardei,et al.  Island divertor experiments on the W7-AS stellarator , 2001 .

[6]  R. A. Dory,et al.  SPECIAL TOPIC: Energy confinement scaling from the international stellarator database , 1995 .

[7]  K. Felch,et al.  Test Results for a 140 GHz, 1 MW Gyrotron , 2003 .

[8]  J. C. Whitson,et al.  Steepest‐descent moment method for three‐dimensional magnetohydrodynamic equilibria , 1983 .

[9]  Mikhail Tokman,et al.  Numerical simulations of tangential microwave launching for EC heating in a tokamak , 2003 .

[10]  M. Schmid,et al.  Development of a 140-GHz 1-MW continuous wave gyrotron for the W7-X stellarator , 2002 .

[11]  Philipp Borchard,et al.  Recent ITER-Relevant Gyrotron Tests , 2005 .

[12]  Andreas Meier,et al.  CVD diamond windows studied with low- and high-power millimeter waves , 2002 .

[13]  C. D. Beidler,et al.  The neoclassical “Electron Root” feature in the Wendelstein-7-AS stellarator , 2000 .

[14]  F. Sardei,et al.  Transport in Stellarators , 1993 .

[15]  J. Murphy,et al.  Distortion of a simple Gaussian beam on reflection from off-axis ellipsoidal mirrors , 1987 .

[16]  ECRH-Group,et al.  Resonant and Nonresonant Electron Cyclotron Heating at Densities above the Plasma Cutoff by O-X-B Mode Conversion at the W7-As Stellarator , 1997 .

[17]  G. Gantenbein,et al.  High-power tests of a remote steering Launcher mock-up at 140 GHZ , 2004 .

[18]  G. V. Pereverzev,et al.  TORBEAM, a beam tracing code for electron-cyclotron waves in tokamak plasmas , 2001 .

[19]  U Wenzel,et al.  New advanced operational regime on the W7-AS stellarator. , 2002, Physical review letters.

[20]  W. Kasparek,et al.  Microwave reflection properties of grooved metallic mirrors , 1992 .

[21]  Masayoshi Taguchi,et al.  ECRH CURRENT DRIVE IN TOKAMAK PLASMAS , 1988 .

[22]  G. Gantenbein,et al.  High-Power Tests of a Remote-Steering Antenna at 140 GHz , 2006 .

[23]  M. A. Gavrilova,et al.  Wave power flux and ray-tracing in regions of resonant absorption , 2000 .

[24]  C. D. Beidler,et al.  Current Control by ECCD for W7-X , 2006 .

[25]  M. Schmid,et al.  Mirror development for the 140 GHz ECRH system of the stellarator W7-X , 2003 .

[26]  G. G. Denisov,et al.  110 GHz gyrotron with a built-in high-efficiency converter , 1992 .

[27]  D. Vinogradov,et al.  Mirror conversion of gaussian beams with simple astigmatism , 1995 .

[28]  R. Winston Light Collection within the Framework of Geometrical Optics , 1970 .

[29]  V. Erckmann,et al.  Electron cyclotron resonance heating and current drive in the W7-X stellarator , 1998 .

[30]  G. Gantenbein,et al.  Conceptual Design of the 140 GHz/10 MW CW ECRH System for the Stellarator W7-X , 1996 .

[31]  Manfred Thumm,et al.  Recent advanced technology in electron cyclotron heating systems , 1995 .

[32]  E. D. Fredrickson,et al.  Experiments close to the beta-limit in W7-AS , 2003 .

[33]  E Egbert Westerhof,et al.  Wave propagation through an electron cyclotron resonance layer , 1997 .

[34]  朴 三奎,et al.  Fusion Technology , 2004, The Future of Fusion Energy.

[35]  W. Kasparek,et al.  Analysis of a multiple-beam waveguide for free-space transmission of microwaves , 2001 .

[36]  W. Kasparek,et al.  Measurements of Ohmic Losses of Metallic Reflectors at 140 GHz Using a 3-Mirror Resonator Technique , 2001 .

[37]  M. Schmid,et al.  High-power gyrotron development at Forschungszentrum Karlsruhe for fusion applications , 2005, IEEE Transactions on Plasma Science.

[38]  S. Hirshman,et al.  Variational bounds for transport coefficients in three-dimensional toroidal plasmas , 1989 .