modlAMP: Python for antimicrobial peptides

Summary: We have implemented the molecular design laboratory's antimicrobial peptides package (modlAMP), a Python‐based software package for the design, classification and visual representation of peptide data. modlAMP offers functions for molecular descriptor calculation and the retrieval of amino acid sequences from public or local sequence databases, and provides instant access to precompiled datasets for machine learning. The package also contains methods for the analysis and representation of circular dichroism spectra. Availability and Implementation: The modlAMP Python package is available under the BSD license from URL http://doi.org/10.5905/ethz‐1007‐72 or via pip from the Python Package Index (PyPI). Contact: gisbert.schneider@pharma.ethz.ch Supplementary information: Supplementary data are available at Bioinformatics online.

[1]  S. Wold,et al.  New chemical descriptors relevant for the design of biologically active peptides. A multivariate characterization of 87 amino acids. , 1998, Journal of medicinal chemistry.

[2]  P. Broto,et al.  Molecular structures: perception, autocorrelation descriptor and sar studies: system of atomic contributions for the calculation of the n-octanol/water partition coefficients , 1984 .

[3]  Davor Juretic,et al.  Computational Design of Highly Selective Antimicrobial Peptides , 2009, J. Chem. Inf. Model..

[4]  S. Wold,et al.  Peptide quantitative structure-activity relationships, a multivariate approach. , 1987, Journal of medicinal chemistry.

[5]  G. Schneider,et al.  Designing antimicrobial peptides: form follows function , 2011, Nature Reviews Drug Discovery.

[6]  Andrea Zaliani,et al.  MS-WHIM Scores for Amino Acids: A New 3D-Description for Peptide QSAR and QSPR Studies , 1999, J. Chem. Inf. Comput. Sci..

[7]  T. Mcmeekin,et al.  Refractive indices of proteins in relation to amino acid composition and specific volume , 1962 .

[8]  Chandan Raychaudhury,et al.  Topological Shape and Size of Peptides: Identification of Potential Allele Specific Helper T Cell Antigenic Sites , 1999, J. Chem. Inf. Comput. Sci..

[9]  Faiza Hanif Waghu,et al.  CAMP: Collection of sequences and structures of antimicrobial peptides , 2013, Nucleic Acids Res..

[10]  Angelo Bifone,et al.  Antimicrobial Peptides Design by Evolutionary Multiobjective Optimization , 2013, PLoS Comput. Biol..

[11]  Wes McKinney,et al.  Data Structures for Statistical Computing in Python , 2010, SciPy.

[12]  M. Levitt Conformational preferences of amino acids in globular proteins. , 1978, Biochemistry.

[13]  Artem Cherkasov,et al.  QSAR modeling and computer‐aided design of antimicrobial peptides , 2008, Journal of peptide science : an official publication of the European Peptide Society.

[14]  Gisbert Schneider,et al.  Scrutinizing MHC-I Binding Peptides and Their Limits of Variation , 2013, PLoS Comput. Biol..

[15]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[16]  Corinna Cortes,et al.  Support-Vector Networks , 1995, Machine Learning.

[17]  Bartek Wilczynski,et al.  Biopython: freely available Python tools for computational molecular biology and bioinformatics , 2009, Bioinform..

[18]  W. Dunn,et al.  Amino acid side chain descriptors for quantitative structure-activity relationship studies of peptide analogues. , 1995, Journal of medicinal chemistry.

[19]  B. Matthews Comparison of the predicted and observed secondary structure of T4 phage lysozyme. , 1975, Biochimica et biophysica acta.

[20]  Gaël Varoquaux,et al.  The NumPy Array: A Structure for Efficient Numerical Computation , 2011, Computing in Science & Engineering.

[21]  Alessandro Senes,et al.  E(z), a depth-dependent potential for assessing the energies of insertion of amino acid side-chains into membranes: derivation and applications to determining the orientation of transmembrane and interfacial helices. , 2007, Journal of molecular biology.

[22]  R. Doolittle,et al.  A simple method for displaying the hydropathic character of a protein. , 1982, Journal of molecular biology.

[23]  Damir Vukičević,et al.  Tools for Designing Amphipathic Helical Antimicrobial Peptides. , 2017, Methods in molecular biology.

[24]  P. Ponnuswamy,et al.  Positional flexibilities of amino acid residues in globular proteins , 2009 .

[25]  K. R. Woods,et al.  Prediction of protein antigenic determinants from amino acid sequences. , 1981, Proceedings of the National Academy of Sciences of the United States of America.

[26]  Xia Li,et al.  APD3: the antimicrobial peptide database as a tool for research and education , 2015, Nucleic Acids Res..

[27]  P. Argos,et al.  Structural prediction of membrane-bound proteins. , 2005, European journal of biochemistry.

[28]  J. M. Zimmerman,et al.  The characterization of amino acid sequences in proteins by statistical methods. , 1968, Journal of theoretical biology.

[29]  Gisbert Schneider,et al.  Sparse Neural Network Models of Antimicrobial Peptide‐Activity Relationships , 2016, Molecular informatics.

[30]  C. DeLisi,et al.  Hydrophobicity scales and computational techniques for detecting amphipathic structures in proteins. , 1987, Journal of molecular biology.

[31]  Gang Zhao,et al.  An amino acid “transmembrane tendency” scale that approaches the theoretical limit to accuracy for prediction of transmembrane helices: Relationship to biological hydrophobicity , 2006, Protein science : a publication of the Protein Society.

[32]  Marina Cocchi,et al.  AMINO-ACIDS CHARACTERIZATION BY GRID AND MULTIVARIATE DATA-ANALYSIS , 1993 .

[33]  David Eisenberg,et al.  The helical hydrophobic moment: a measure of the amphiphilicity of a helix , 1982, Nature.

[34]  Gaël Varoquaux,et al.  Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..