Convex functions on the Heisenberg group

Abstract.Convex functions in Euclidean space can be characterized as universal viscosity subsolutions of all homogeneous fully nonlinear second order elliptic partial differential equations. This is the starting point we have chosen for a theory of convex functions on the Heisenberg group.

[1]  The Harnack Inequality for ∞-Harmonic Functions , 1995 .

[2]  Frédéric Jean,et al.  Sub-Riemannian Geometry , 2022 .

[3]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[4]  Elias M. Stein,et al.  Hardy spaces on homogeneous groups , 1982 .

[5]  R. Jensen Uniqueness of Lipschitz extensions: Minimizing the sup norm of the gradient , 1993 .

[6]  M. Crandall Viscosity solutions: A primer , 1997 .

[7]  Juan J. Manfredi,et al.  A VERSION OF THE HOPF-LAX FORMULA IN THE HEISENBERG GROUP , 2002 .

[8]  G. Lu Embedding theorems into Lipschitz and BMO spaces and applications to quasilinear subelliptic differential equations , 1996 .

[9]  Lawrence C. Evans Estimates for smooth absolutely minimizing Lipschitz extensions. , 1993 .

[10]  H. Helson Note on harmonic functions , 1953 .

[11]  L. Evans Measure theory and fine properties of functions , 1992 .

[12]  Petri Juutinen,et al.  On the Equivalence of Viscosity Solutions and Weak Solutions for a Quasi-Linear Equation , 2001, SIAM J. Math. Anal..

[13]  E. Stein,et al.  Balls and metrics defined by vector fields I: Basic properties , 1985 .

[14]  G. Lu Weighted Poincaré and Sobolev inequalities for vector fields satisfying Hörmander's condition and applications. , 1992 .

[15]  V. R. Thiruvenkatachar Note on harmonic functions , 1938 .

[16]  Thomas Bieske,et al.  ON ∞-HARMONIC FUNCTIONS ON THE HEISENBERG GROUP , 2002 .

[17]  P. Sutcliffe The Oxford University Press , 2000 .

[18]  Peter Lindqvist,et al.  Superharmonicity of nonlinear ground states , 2000 .

[19]  Note on oo-superharmonic functions , 1997 .

[20]  L. Caffarelli,et al.  Fully Nonlinear Elliptic Equations , 1995 .

[21]  Michael Frazier,et al.  Studies in Advanced Mathematics , 2004 .

[22]  J. Heinonen,et al.  Nonlinear Potential Theory of Degenerate Elliptic Equations , 1993 .

[23]  F. U. –. E. Lanconelli On the Poisson kernel for the Kohn Laplacian , 1999 .

[24]  B. Gaveau Principe de moindre action, propagation de la chaleur et estimees sous elliptiques sur certains groupes nilpotents , 1977 .

[25]  Cristian E. Gutiérrez,et al.  The Monge―Ampère Equation , 2001 .

[26]  P. Lions,et al.  Some Properties of Viscosity Solutions of Hamilton-Jacobi Equations. , 1984 .

[27]  F. S. Cassano,et al.  Surface measures in Carnot-Carathéodory spaces , 2001 .

[28]  Donatella Danielli,et al.  Notions of Convexity in Carnot Groups , 2003 .

[29]  R. Jensen The maximum principle for viscosity solutions of fully nonlinear second order partial differential equations , 1988 .

[30]  R. Strichartz Sub-Riemannian geometry , 1986 .

[31]  P. Lions,et al.  User’s guide to viscosity solutions of second order partial differential equations , 1992, math/9207212.

[32]  P. Lions,et al.  CONVEX VISCOSITY SOLUTIONS AND STATE CONSTRAINTS , 1997 .