Iterative Linear Algebra

This chapter describes iterative methods for approximately solving systems of linear equations. This discussion begins by presenting the concept of a sparse matrix, where it arises and how it might be represented in a computer. Next, simple methods based on iterative improvement are presented, along with termination criteria for the iteration. Afterwards, more elaborate gradient methods are examined, such as conjugate gradients and biconjugate gradients. The chapter proceeds tominimum resiual methods, and ends with a fairly detailed discussion of multigrid methods.

[1]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[2]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[3]  C. Kelley Iterative Methods for Linear and Nonlinear Equations , 1987 .

[4]  Zhishun A. Liu,et al.  A Look Ahead Lanczos Algorithm for Unsymmetric Matrices , 1985 .

[5]  P. Sonneveld CGS, A Fast Lanczos-Type Solver for Nonsymmetric Linear systems , 1989 .

[6]  H. Akaike On a successive transformation of probability distribution and its application to the analysis of the optimum gradient method , 1959 .

[7]  Henk A. van der Vorst,et al.  Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems , 1992, SIAM J. Sci. Comput..

[8]  H. Elman Iterative methods for large, sparse, nonsymmetric systems of linear equations , 1982 .

[9]  R. P. Kendall,et al.  An Approximate Factorization Procedure for Solving Self-Adjoint Elliptic Difference Equations , 1968 .

[10]  John A. Trangenstein Numerical solution of elliptic and parabolic partial differential equations , 2013 .

[11]  R. Bank,et al.  5. Variational Multigrid Theory , 1987 .

[12]  D. Brandt,et al.  Multi-level adaptive solutions to boundary-value problems math comptr , 1977 .

[13]  Mark T. Jones,et al.  An improved incomplete Cholesky factorization , 1995, TOMS.

[14]  R. Freund,et al.  QMR: a quasi-minimal residual method for non-Hermitian linear systems , 1991 .

[15]  Richard Barrett,et al.  Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods , 1994, Other Titles in Applied Mathematics.

[16]  P. Halmos Finite-Dimensional Vector Spaces , 1960 .

[17]  R. Fletcher Conjugate gradient methods for indefinite systems , 1976 .

[18]  Richard S. Varga,et al.  Matrix Iterative Analysis , 2000, The Mathematical Gazette.

[19]  Louis A. Hageman,et al.  Iterative Solution of Large Linear Systems. , 1971 .

[20]  J. W. Ruge,et al.  4. Algebraic Multigrid , 1987 .

[21]  O. Axelsson Incomplete block matrix factorization preconditioning methods. The ultimate answer , 1985 .

[22]  G. Stewart,et al.  Reorthogonalization and stable algorithms for updating the Gram-Schmidt QR factorization , 1976 .

[23]  Claude Brezinski,et al.  Avoiding breakdown in the CGS algorithm , 1991, Numerical Algorithms.

[24]  M. Hestenes,et al.  Methods of conjugate gradients for solving linear systems , 1952 .

[25]  R. P. Fedorenko The speed of convergence of one iterative process , 1964 .

[26]  Lloyd N. Trefethen,et al.  How Fast are Nonsymmetric Matrix Iterations? , 1992, SIAM J. Matrix Anal. Appl..

[27]  W. Hackbusch Iterative Solution of Large Sparse Systems of Equations , 1993 .

[28]  O. Axelsson Iterative solution methods , 1995 .

[29]  Claude Brezinski,et al.  Avoiding breakdown and near-breakdown in Lanczos type algorithms , 1991, Numerical Algorithms.

[30]  A. Ostrowski On the linear iteration procedures for symmetric matrices , 1983 .

[31]  L. Kantorovich,et al.  Functional analysis and applied mathematics , 1963 .

[32]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[33]  C. Lanczos Solution of Systems of Linear Equations by Minimized Iterations1 , 1952 .