A framework for optimal high-level descriptions in science and engineering - preliminary report

Both science and engineering rely on the use of high-level descriptions. These go under various names, including “macrostates,” “coarse-grainings,” and “effective theories”. The ideal gas is a high-level description of a large collection of point particles, just as a a set of interacting firms is a high-level description of individuals participating in an economy and just as a cell a high-level description of a set of biochemical interactions. Typically, these descriptions are constructed in an ad hoc manner, without an explicit understanding of their purpose. Here, we formalize and quantify that purpose as a combination of the need to accurately predict observables of interest, and to do so efficiently and with bounded computational resources. This State Space Compression framework makes it possible to solve for the optimal high-level description of a given dynamical system, rather than relying on human intuition alone. In this preliminary report, we present our framework, show its application to a diverse set of examples in Computer Science, Biology, Physics and Networks, and develop some of technical machinery for evaluating accuracy and computation costs in a variety of systems. ∗Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM, 87501 †School of Informatics and Computing, Indiana University, 901 E. 10th St., Bloomington, IN 47408 1 ar X iv :1 40 9. 74 03 v1 [ cs .I T ] 2 5 Se p 20 14

[1]  Herbert A. Simon,et al.  Aggregation of Variables in Dynamic Systems , 1961 .

[2]  O. Maroney Generalizing Landauer's principle. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[3]  Brian Munsky,et al.  The Finite State Projection Approach for the Analysis of Stochastic Noise in Gene Networks , 2008, IEEE Transactions on Automatic Control.

[4]  Daniel A. Jiménez Improved latency and accuracy for neural branch prediction , 2005, TOCS.

[5]  Masahito Ueda,et al.  Minimal energy cost for thermodynamic information processing: measurement and information erasure. , 2008, Physical review letters.

[6]  Marcus Hutter,et al.  Algorithmic Information Theory , 1977, IBM J. Res. Dev..

[7]  C. Moore,et al.  What Is a Macrostate? Subjective Observations and Objective Dynamics , 2003, cond-mat/0303625.

[8]  Lenore Blum,et al.  Complexity and Real Computation , 1997, Springer New York.

[9]  A. U.S.,et al.  Predictability , Complexity , and Learning , 2002 .

[10]  Susanne Still,et al.  Information Bottleneck Approach to Predictive Inference , 2014, Entropy.

[11]  Karoline Wiesner,et al.  Information-theoretic lower bound on energy cost of stochastic computation , 2011, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[12]  Gregory J. Chaitin,et al.  Algorithmic Information Theory , 1987, IBM J. Res. Dev..

[13]  A. Clark Whatever next? Predictive brains, situated agents, and the future of cognitive science. , 2013, The Behavioral and brain sciences.

[14]  J. Rissanen A UNIVERSAL PRIOR FOR INTEGERS AND ESTIMATION BY MINIMUM DESCRIPTION LENGTH , 1983 .

[15]  BaiZhaojun Krylov subspace techniques for reduced-order modeling of large-scale dynamical systems , 2002 .

[16]  D. E. Aspnes,et al.  Static Phenomena Near Critical Points: Theory and Experiment , 1967 .

[17]  F. Radicchi,et al.  Complex networks renormalization: flows and fixed points. , 2008, Physical review letters.

[18]  C. Shalizi,et al.  Causal architecture, complexity and self-organization in time series and cellular automata , 2001 .

[19]  Javier M. Buldú,et al.  Functional brain networks: great expectations, hard times and the big leap forward , 2014, Philosophical Transactions of the Royal Society B: Biological Sciences.

[20]  Ivar Ekeland,et al.  New Developments in Aggregation Economics , 2011 .

[21]  Robert Shaw,et al.  The Dripping Faucet As A Model Chaotic System , 1984 .

[22]  Uri Alon,et al.  Coarse-graining and self-dissimilarity of complex networks. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[23]  R. Landauer The physical nature of information , 1996 .

[24]  Patrick C Phillips,et al.  Network thinking in ecology and evolution. , 2005, Trends in ecology & evolution.

[25]  Marek Kimmel,et al.  Branching processes in biology , 2002 .

[26]  J. Krakauer,et al.  Error correction, sensory prediction, and adaptation in motor control. , 2010, Annual review of neuroscience.

[27]  Abhijit Banerjee,et al.  Gossip: Identifying Central Individuals in a Social Network , 2014, ArXiv.

[28]  Cristopher Moore,et al.  The Nature of Computation , 2011 .

[29]  M. Jackson,et al.  Social Capital and Social Quilts: Network Patterns of Favor Exchange , 2011 .

[30]  John Maynard Smith,et al.  The Concept of Information in Biology , 2000, Philosophy of Science.

[31]  Susanne Still,et al.  The thermodynamics of prediction , 2012, Physical review letters.

[32]  Rolf Herken,et al.  The Universal Turing Machine: A Half-Century Survey , 1992 .

[33]  H. V. D. Vorst,et al.  Model Order Reduction: Theory, Research Aspects and Applications , 2008 .

[34]  R. Landauer,et al.  Irreversibility and heat generation in the computing process , 1961, IBM J. Res. Dev..

[35]  M. N. Jacobi,et al.  A dual eigenvector condition for strong lumpability of Markov chains , 2007, 0710.1986.

[36]  Olof Görnerup,et al.  A Method for Inferring Hierarchical Dynamics in Stochastic Processes , 2007, Adv. Complex Syst..

[37]  Mikhail Prokopenko,et al.  Transfer Entropy and Transient Limits of Computation , 2014, Scientific Reports.

[38]  Charles H. Bennett Time/Space Trade-Offs for Reversible Computation , 1989, SIAM J. Comput..

[39]  Leslie Ann Goldberg,et al.  A Complexity Dichotomy for Partition Functions with Mixed Signs , 2008, SIAM J. Comput..

[40]  Olof Görnerup,et al.  A Method for Finding Aggregated Representations of Linear Dynamical Systems , 2010, Adv. Complex Syst..

[41]  Nicholas J. Guido,et al.  A bottom-up approach to gene regulation , 2006, Nature.

[42]  David H. Wolpert,et al.  Using self-dissimilarity to quantify complexity , 2007, Complex..

[43]  Schreiber,et al.  Measuring information transfer , 2000, Physical review letters.

[44]  Charles H. Bennett,et al.  Logical reversibility of computation , 1973 .

[45]  Navot Israeli,et al.  Computational irreducibility and the predictability of complex physical systems. , 2004, Physical review letters.

[46]  Erika Ábrahám,et al.  Tools and Algorithms for the Construction and Analysis of Systems , 2014, Lecture Notes in Computer Science.

[47]  W. Holcombe Algebraic Automata Theory , 1982 .

[48]  M. Khammash,et al.  The finite state projection algorithm for the solution of the chemical master equation. , 2006, The Journal of chemical physics.

[49]  J. Hartmanis,et al.  On the Computational Complexity of Algorithms , 1965 .

[50]  Eckehard Olbrich,et al.  Comparison between Different Methods of Level Identification , 2014, Adv. Complex Syst..

[51]  Mikhail Prokopenko,et al.  On Thermodynamic Interpretation of Transfer Entropy , 2013, Entropy.

[52]  Alessandro Vespignani,et al.  Dynamical Processes on Complex Networks , 2008 .

[53]  Andrea Montanari,et al.  The spread of innovations in social networks , 2010, Proceedings of the National Academy of Sciences.

[54]  Simon DeDeo,et al.  Dynamics and processing in finite self-similar networks , 2011, Journal of The Royal Society Interface.

[55]  Pierre Auger,et al.  Aggregation methods in dynamical systems and applications in population and community dynamics , 2008 .

[56]  N. Goldenfeld,et al.  Coarse-graining of cellular automata, emergence, and the predictability of complex systems. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[57]  Z. Bai Krylov subspace techniques for reduced-order modeling of large-scale dynamical systems , 2002 .

[58]  Neo D. Martinez,et al.  Food webs: reconciling the structure and function of biodiversity. , 2012, Trends in ecology & evolution.

[59]  Charles H. Bennett,et al.  The thermodynamics of computation—a review , 1982 .

[60]  Sara Imari Walker,et al.  Evolutionary Transitions and Top-Down Causation , 2012, 1207.4808.

[61]  David J. C. MacKay,et al.  Information Theory, Inference, and Learning Algorithms , 2004, IEEE Transactions on Information Theory.

[62]  Bart Deplancke,et al.  Gene Regulatory Networks , 2012, Methods in Molecular Biology.

[63]  Mark E. J. Newman,et al.  The Structure and Function of Complex Networks , 2003, SIAM Rev..

[64]  S. Havlin,et al.  Self-similarity of complex networks , 2005, Nature.

[65]  Mingzhou Ding,et al.  Evaluating causal relations in neural systems: Granger causality, directed transfer function and statistical assessment of significance , 2001, Biological Cybernetics.

[66]  Simon DeDeo Group Minds and the Case of Wikipedia , 2014, Hum. Comput..

[67]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[68]  Marissa G. Saunders,et al.  Coarse-graining methods for computational biology. , 2013, Annual review of biophysics.

[69]  David H. Wolpert,et al.  Self-dissimilarity: an empirically observable complexity measure , 2000 .

[70]  Robert E. Mahony,et al.  Lumpable hidden Markov models-model reduction and reduced complexity filtering , 2000, IEEE Trans. Autom. Control..

[71]  Matthew O. Jackson,et al.  Gossip: Identifying Central Individuals in a Social Network , 2016 .

[72]  John Maynard Smith,et al.  Time in the evolutionary process. , 1970, Studium generale; Zeitschrift fur die Einheit der Wissenschaften im Zusammenhang ihrer Begriffsbildungen und Forschungsmethoden.

[73]  Naftali Tishby,et al.  The information bottleneck method , 2000, ArXiv.

[74]  Richard S. Sutton,et al.  Reinforcement Learning: An Introduction , 1998, IEEE Trans. Neural Networks.

[75]  Eric Lutz,et al.  Comment on "Minimal energy cost for thermodynamic information processing: measurement and information erasure". , 2010, Physical review letters.

[76]  Andrea Cavagna,et al.  Information transfer and behavioural inertia in starling flocks , 2013, Nature Physics.

[77]  M. B. Plenio,et al.  The physics of forgetting: Landauer's erasure principle and information theory , 2001, quant-ph/0103108.

[78]  W. Bialek,et al.  Statistical mechanics for natural flocks of birds , 2011, Proceedings of the National Academy of Sciences.

[79]  Mikko Alava,et al.  Branching Processes , 2009, Encyclopedia of Complexity and Systems Science.

[80]  L. Goddard Information Theory , 1962, Nature.

[81]  I. Couzin Collective cognition in animal groups , 2009, Trends in Cognitive Sciences.

[82]  D. Krakauer Darwinian demons, evolutionary complexity, and information maximization. , 2011, Chaos.

[83]  Shizume Heat generation required by information erasure. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[84]  Charles H. Bennett,et al.  Notes on Landauer's Principle, Reversible Computation, and Maxwell's Demon , 2002, physics/0210005.

[85]  Marko Bajec,et al.  Self-similar scaling of density in complex real-world networks , 2011, ArXiv.

[86]  Rolf Landauer,et al.  Minimal Energy Requirements in Communication , 1996, Science.

[87]  K-I Goh,et al.  Skeleton and fractal scaling in complex networks. , 2006, Physical review letters.

[88]  Daniel Polani,et al.  Information Flows in Causal Networks , 2008, Adv. Complex Syst..

[89]  K. Wiesner,et al.  What is a complex system? , 2012, European Journal for Philosophy of Science.

[90]  P. Davies,et al.  The epigenome and top-down causation , 2012, Interface Focus.

[91]  Rolf Landauer,et al.  Energy requirements in communication , 1987 .

[92]  Lloyd Use of mutual information to decrease entropy: Implications for the second law of thermodynamics. , 1989, Physical review. A, General physics.

[93]  William H. Sanders,et al.  Optimal state-space lumping in Markov chains , 2003, Inf. Process. Lett..