A combination of hierarchical pore and buffering layer construction for ultrastable nanocluster Si/SiOx anode

[1]  Yi Cui,et al.  Scalable synthesis of nanoporous silicon microparticles for highly cyclable lithium-ion batteries , 2020, Nano Research.

[2]  Allen Pei,et al.  Surface-engineered mesoporous silicon microparticles as high-Coulombic-efficiency anodes for lithium-ion batteries , 2019, Nano Energy.

[3]  P. Chu,et al.  Scalable synthesis of ant-nest-like bulk porous silicon for high-performance lithium-ion battery anodes , 2019, Nature Communications.

[4]  Xiangyang Zhou,et al.  Boron-Doped Spherical Hollow-Porous Silicon Local Lattice Expansion toward a High-Performance Lithium-Ion-Battery Anode. , 2019, Inorganic chemistry.

[5]  Jaephil Cho,et al.  Quantification of Pseudocapacitive Contribution in Nanocage‐Shaped Silicon–Carbon Composite Anode , 2019, Advanced Energy Materials.

[6]  C. Sudakar,et al.  High-rate and long-cycle life performance of nano-porous nano-silicon derived from mesoporous MCM-41 as an anode for lithium-ion battery , 2019, Electrochimica Acta.

[7]  Hongbo Zeng,et al.  Magnesio-mechanochemical reduced SiO for high-performance lithium ion batteries , 2018, Journal of Power Sources.

[8]  Allen Pei,et al.  Shell-Protective Secondary Silicon Nanostructures as Pressure-Resistant High-Volumetric-Capacity Anodes for Lithium-Ion Batteries. , 2018, Nano letters.

[9]  Siddharth V. Patwardhan,et al.  A review of magnesiothermic reduction of silica to porous silicon for lithium-ion battery applications and beyond , 2018 .

[10]  Ji‐Guang Zhang,et al.  A novel approach to synthesize micrometer-sized porous silicon as a high performance anode for lithium-ion batteries , 2018, Nano Energy.

[11]  J. Hassoun,et al.  A Lithium-Ion Battery using a 3 D-Array Nanostructured Graphene-Sulfur Cathode and a Silicon Oxide-Based Anode. , 2018, ChemSusChem.

[12]  Yitai Qian,et al.  Green, Scalable, and Controllable Fabrication of Nanoporous Silicon from Commercial Alloy Precursors for High-Energy Lithium-Ion Batteries. , 2018, ACS nano.

[13]  Jooho Moon,et al.  Highly porous carbon-coated silicon nanoparticles with canyon-like surfaces as a high-performance anode material for Li-ion batteries , 2018 .

[14]  Ji-Won Jung,et al.  Highly porous coral-like silicon particles synthesized by an ultra-simple thermal-reduction method , 2018 .

[15]  X. Qin,et al.  Electrosprayed silicon-embedded porous carbon microspheres as lithium-ion battery anodes with exceptional rate capacities , 2018 .

[16]  Liang Wang,et al.  Amorphous TiO2 Shells: A Vital Elastic Buffering Layer on Silicon Nanoparticles for High‐Performance and Safe Lithium Storage , 2017, Advanced materials.

[17]  J. Hassoun,et al.  A SiOx-based anode in a high-voltage lithium-ion battery , 2017 .

[18]  J. Choi,et al.  Delicate Structural Control of Si-SiOx-C Composite via High-Speed Spray Pyrolysis for Li-Ion Battery Anodes. , 2017, Nano letters.

[19]  Ya‐Xia Yin,et al.  Watermelon‐Inspired Si/C Microspheres with Hierarchical Buffer Structures for Densely Compacted Lithium‐Ion Battery Anodes , 2017 .

[20]  Zhaoping Liu,et al.  Self-Templating Construction of 3D Hierarchical Macro-/Mesoporous Silicon from 0D Silica Nanoparticles. , 2017, ACS nano.

[21]  Zheng-Long Xu,et al.  Carbon-coated mesoporous silicon microsphere anodes with greatly reduced volume expansion , 2016 .

[22]  Ming Liu,et al.  A honeycomb-cobweb inspired hierarchical core–shell structure design for electrospun silicon/carbon fibers as lithium-ion battery anodes , 2016 .

[23]  Hyun-Wook Lee,et al.  Erratum: Growth of conformal graphene cages on micrometre-sized silicon particles as stable battery anodes , 2016, Nature Energy.

[24]  Chongmin Wang,et al.  Inward lithium-ion breathing of hierarchically porous silicon anodes , 2015, Nature Communications.

[25]  Yan‐Bing He,et al.  “Concrete” inspired construction of a silicon/carbon hybrid electrode for high performance lithium ion battery , 2015 .

[26]  Jinyoung Chun,et al.  Highly mesoporous silicon derived from waste iron slag for high performance lithium ion battery anodes , 2015 .

[27]  Yan‐Bing He,et al.  Multilayered silicon embedded porous carbon/graphene hybrid film as a high performance anode , 2015 .

[28]  Yan‐Bing He,et al.  Electrospun core–shell silicon/carbon fibers with an internal honeycomb-like conductive carbon framework as an anode for lithium ion batteries , 2015 .

[29]  Dongyuan Zhao,et al.  Highly Reversible and Large Lithium Storage in Mesoporous Si/C Nanocomposite Anodes with Silicon Nanoparticles Embedded in a Carbon Framework , 2014, Advanced materials.

[30]  Michael J Sailor,et al.  Mesoporous silicon sponge as an anti-pulverization structure for high-performance lithium-ion battery anodes , 2014, Nature Communications.

[31]  T. Wada,et al.  Bulk-nanoporous-silicon negative electrode with extremely high cyclability for lithium-ion batteries prepared using a top-down process. , 2014, Nano letters.

[32]  Justin T. Harris,et al.  In situ TEM of two-phase lithiation of amorphous silicon nanospheres. , 2013, Nano letters.

[33]  Jaephil Cho,et al.  High‐Performance Macroporous Bulk Silicon Anodes Synthesized by Template‐Free Chemical Etching , 2012 .

[34]  Jian Yu Huang,et al.  Size-dependent fracture of silicon nanoparticles during lithiation. , 2011, ACS nano.

[35]  Jaephil Cho,et al.  A critical size of silicon nano-anodes for lithium rechargeable batteries. , 2010, Angewandte Chemie.

[36]  J. L. Gómez‐Cámer,et al.  Combining 5 V LiNi0.5Mn1.5O4 spinel and Si nanoparticles for advanced Li-ion batteries , 2009 .

[37]  R. Schlögl,et al.  Superior storage performance of a Si@SiOx/C nanocomposite as anode material for lithium-ion batteries. , 2008, Angewandte Chemie.

[38]  M. Armand,et al.  Building better batteries , 2008, Nature.

[39]  T. Sakai,et al.  Micrometer-Scale Amorphous Si Thin-Film Electrodes Fabricated by Electron-Beam Deposition for Li-Ion Batteries , 2006 .

[40]  Seung-won Lee,et al.  Electrochemical characteristics and cycle performance of LiMn2O4/a-Si microbattery , 2004 .

[41]  M. Armand,et al.  Issues and challenges facing rechargeable lithium batteries , 2001, Nature.