An Approach to Combined Laplacian and Optimization-Based Smoothing for Triangular, Quadrilateral, and Quad-Dominant Meshes

Automatic finite element mesh generation techniques have become commonly used tools for the analysis of complex, real-world models. All of these methods can, however, create distorted and even unusable elements. Fortunately, several techniques exist which can take an existing mesh and improve its quality. Smoothing (also referred to as mesh relaxation) is one such method, which repositions nodal locations, so as to minimize element distortion. In this paper, an overall mesh smoothing scheme is presented for meshes consisting of triangular, quadrilateral, or mixed triangular and quadrilateral elements. This paper describes an efficient and robust combination of constrained Laplacian smoothing together with an optimization-based smoothing algorithm. The smoothing algorithms have been implemented in ANSYS and performance times are presented along with several example models.

[1]  Steven J. Owen,et al.  Advancing Front Surface Mesh Generation in Parametric Space Using a Riemannian Surface Definition , 1998, IMR.

[2]  Ted D. Blacker,et al.  Analysis automation with paving: A new quadrilateral meshing technique☆ , 1991 .

[3]  S. H. Lo,et al.  Generating quadrilateral elements on plane and over curved surfaces , 1989 .

[4]  D. A. Field Laplacian smoothing and Delaunay triangulations , 1988 .

[5]  Mark T. Jones,et al.  An efficient parallel algorithm for mesh smoothing , 1995 .

[6]  Karl Schweizerhof,et al.  COMBINATION OF ADAPTIVITY AND MESH SMOOTHING FOR THE FINITE ELEMENT ANALYSIS OF SHELLS WITH INTERSECTIONS , 1997 .

[7]  David Eppstein,et al.  Optimal point placement for mesh smoothing , 1997, SODA '97.

[8]  Paul-Louis George,et al.  Optimization of Tetrahedral Meshes , 1995 .

[9]  A. Khamayseh,et al.  ANISOTROPIC SMOOTHING AND SOLUTION ADAPTION FOR UNSTRUCTURED GRIDS , 1996 .

[10]  R. Lewis,et al.  Three-dimensional unstructured mesh generation: Part 3. Volume meshes , 1996 .

[11]  Paul-Louis George,et al.  Delaunay triangulation and meshing : application to finite elements , 1998 .

[12]  P. Hansbo Generalized Laplacian smoothing of unstructured grids , 1995 .

[13]  Steven E. Benzley,et al.  GENERALIZED 3-D PAVING : AN AUTOMATED QUADRILATERAL SURFACE MESH GENERATION ALGORITHM , 1996 .

[14]  V. Parthasarathy,et al.  A constrained optimization approach to finite element mesh smoothing , 1991 .

[15]  Kenji Shimada,et al.  Physically-based mesh generation: automated triangulation of surfaces and volumes via bubble packing , 1993 .

[16]  Lori A. Freitag,et al.  On combining Laplacian and optimization-based mesh smoothing techniques , 1997 .

[17]  L. Herrmann Laplacian-Isoparametric Grid Generation Scheme , 1976 .

[18]  B. Joe Three-dimensional triangulations from local transformations , 1989 .

[19]  S. Canann,et al.  Optismoothing: an optimization-driven approach to mesh smoothing , 1993 .

[20]  S. Owen,et al.  H-Morph: an indirect approach to advancing front hex meshing , 1999 .

[21]  Graham F. Carey,et al.  Shape optimization using adaptive shape refinement , 1993 .

[22]  John Robinson,et al.  Distortion measures for quadrilaterals with curved boundaries , 1988 .

[23]  R. E. Jones A Self-Organizing Mesh Generation Program , 1974 .

[24]  Alf Samuelsson,et al.  Distortion measures and inverse mapping for isoparametric 8τnode plane finite elements with curved boundaries , 1998 .

[25]  Barry Joe,et al.  Construction of Three-Dimensional Improved-Quality Triangulations Using Local Transformations , 1995, SIAM J. Sci. Comput..

[26]  E. Amezua,et al.  A method for the improvement of 3D solid finite-element meshes , 1995 .

[27]  Carl Ollivier-Gooch,et al.  Tetrahedral mesh improvement using swapping and smoothing , 1997 .

[28]  Paul S. Heckbert,et al.  A Pliant Method for Anisotropic Mesh Generation , 1996 .

[29]  D. G. Roddeman,et al.  An a priori geometry check for a single isoparametric finite element , 1993 .

[30]  I. Babuska,et al.  ON THE ANGLE CONDITION IN THE FINITE ELEMENT METHOD , 1976 .

[31]  Martin Berzins,et al.  Solution-Based Mesh Quality for Triangular and Tetrahedral Meshes , 1997 .

[32]  B. Joe,et al.  Relationship between tetrahedron shape measures , 1994 .

[33]  Grégory Coussement,et al.  Structured mesh adaption: space accuracy and interpolation methods , 1992 .

[34]  Steven J. Owen,et al.  Neighborhood-Based Element Sizing Control for Finite Element Surface Meshing , 1997 .

[35]  N. Jones,et al.  Algorithm for Smoothing Triangulated Surfaces , 1991 .

[36]  Scott A. Canann,et al.  Automatic 3D surface meshing to address today's industrial needs , 1997 .

[37]  Carl Ollivier-Gooch,et al.  A comparison of tetrahedral mesh improvement techniques , 1996 .

[38]  J. Goldak,et al.  A DISTORTION METRIC FOR ISOPARAMETRIC FINITE ELEMENTS , 1988 .

[39]  Mark S. Shephard,et al.  Automatic three-dimensional mesh generation by the finite octree technique , 1984 .

[40]  S. Lo A NEW MESH GENERATION SCHEME FOR ARBITRARY PLANAR DOMAINS , 1985 .

[41]  Ted D. Blacker,et al.  Paving: A new approach to automated quadrilateral mesh generation , 1991 .

[42]  R. Bank,et al.  Some Refinement Algorithms And Data Structures For Regular Local Mesh Refinement , 1983 .

[43]  J. Robinson Some new distortion measures for quadrilaterals , 1987 .

[44]  Carl Ollivier-Gooch,et al.  A computational study of the effect of unstructured mesh quality on solution efficiency , 1997 .

[45]  A. Liu,et al.  On the shape of tetrahedra from bisection , 1994 .

[46]  C. Lee,et al.  A new scheme for the generation of a graded quadrilateral mesh , 1994 .

[47]  J. Barlow More on optimal stress points—reduced integration, element distortions and error estimation , 1989 .

[48]  Mark S. Shephard,et al.  Automatic three‐dimensional mesh generation by the finite octree technique , 1984 .

[49]  O. Zienkiewicz,et al.  A new approach to the development of automatic quadrilateral mesh generation , 1991 .

[50]  R. K. Smith,et al.  Mesh Smoothing Using A Posteriori Error Estimates , 1997 .

[51]  Jean-Christophe Cuillière An adaptive method for the automatic triangulation of 3D parametric surfaces , 1998, Comput. Aided Des..

[52]  M. Rivara New Mathematical Tools and Techniques for the Refinement and/or Improvement of Unstructured Triangulations , 1996 .

[53]  Kenji Shimada,et al.  Bubble mesh: automated triangular meshing of non-manifold geometry by sphere packing , 1995, SMA '95.