Enabling olefin metathesis on proteins: chemical methods for installation of S-allyl cysteine.

Multiple, complementary methods are reported for the chemical conversion of cysteine to S-allyl cysteine on protein surfaces, a useful transformation for the exploration of olefin metathesis on proteins.

[1]  B. G. Davis,et al.  Chemical modification of proteins at cysteine: opportunities in chemistry and biology. , 2009, Chemistry, an Asian journal.

[2]  B. G. Davis,et al.  Olefin Metathesis for Site‐Selective Protein Modification , 2009, Chembiochem : a European journal of chemical biology.

[3]  K. Grela,et al.  Aqueous olefin metathesis. , 2009, Angewandte Chemie.

[4]  B. G. Davis Sugars and proteins: New strategies in synthetic biology , 2009 .

[5]  D. Schwarzer,et al.  Chemoselective ligation and modification strategies for peptides and proteins. , 2008, Angewandte Chemie.

[6]  Joseph B. Binder,et al.  Olefin metathesis for chemical biology. , 2008, Current opinion in chemical biology.

[7]  K. Kirshenbaum,et al.  Cross-dressing proteins by olefin metathesis. , 2008, Nature chemical biology.

[8]  Fan Yang,et al.  Synthesis of neoglycoconjugates by the desulfurative rearrangement of allylic disulfides. , 2008, The Journal of organic chemistry.

[9]  Q. Guo,et al.  Substituent effect on the efficiency of desulfurizative rearrangement of allylic disulfides. , 2008, The Journal of organic chemistry.

[10]  B. G. Davis,et al.  Allyl sulfides are privileged substrates in aqueous cross-metathesis: application to site-selective protein modification. , 2008, Journal of the American Chemical Society.

[11]  I. Carrico Chemoselective modification of proteins: hitting the target. , 2008, Chemical Society reviews.

[12]  M. Mann,et al.  Iodoacetamide-induced artifact mimics ubiquitination in mass spectrometry , 2008, Nature Methods.

[13]  S. V. van Kasteren,et al.  Chemical approaches to mapping the function of post‐translational modifications , 2008, The FEBS journal.

[14]  J. Errey,et al.  Facile conversion of cysteine and alkyl cysteines to dehydroalanine on protein surfaces: versatile and switchable access to functionalized proteins. , 2008, Journal of the American Chemical Society.

[15]  Venkata R. Krishnamurthy,et al.  Dechalcogenative allylic selenosulfide and disulfide rearrangements: complementary methods for the formation of allylic sulfides in the absence of electrophiles. Scope, limitations, and application to the functionalization of unprotected peptides in aqueous media. , 2007, Journal of the American Chemical Society.

[16]  Venkata R. Krishnamurthy,et al.  Allylic disulfide rearrangement and desulfurization: mild, electrophile-free thioether formation from thiols. , 2006, Organic letters.

[17]  Venkata R. Krishnamurthy,et al.  Allylic selenosulfide rearrangement: a method for chemical ligation to cysteine and other thiols. , 2006, Journal of the American Chemical Society.

[18]  P. Garnier,et al.  Glycosyl phenylthiosulfonates (glyco-PTS): novel reagents for glycoprotein synthesis. , 2003, Organic & biomolecular chemistry.

[19]  R. Grubbs,et al.  A general model for selectivity in olefin cross metathesis. , 2003, Journal of the American Chemical Society.

[20]  H. Waldmann,et al.  Solid-phase synthesis of lipidated peptides. , 2002, Chemistry.

[21]  R. Goody,et al.  Intein-mediated synthesis of geranylgeranylated Rab7 protein in vitro. , 2002, Journal of the American Chemical Society.

[22]  M. Distefano,et al.  Generation of new enzymes via covalent modification of existing proteins. , 2001, Chemical reviews.

[23]  A. Wittinghofer,et al.  Synthesis of functional Ras lipoproteins and fluorescent derivatives. , 2001, Journal of the American Chemical Society.

[24]  A. Hoveyda,et al.  Efficient and Recyclable Monomeric and Dendritic Ru-Based Metathesis Catalysts , 2000 .

[25]  J. B. Jones,et al.  Benzophenone boronic acid photoaffinity labeling of subtilisin CMMs to probe altered specificity. , 2000, Bioorganic & medicinal chemistry.

[26]  K. Sharpless,et al.  Facile thermal rearrangements of allyl selenides and diselenides. [1,3] and [2,3] Shifts , 1972 .

[27]  J. Baldwin,et al.  Thiosulfoxides. Intermediates in rearrangement and reduction of allylic disulfides , 1971 .

[28]  G. Ellman,et al.  Tissue sulfhydryl groups. , 1959, Archives of biochemistry and biophysics.

[29]  C. Poulter,et al.  Prenylated proteins. A convenient synthesis of farnesyl cysteinyl thioethers , 1991 .