Combined interpretation of radar, hydraulic, and tracer data from a fractured-rock aquifer near Mirror Lake, New Hampshire, USA

An integrated interpretation of field experimental cross-hole radar, tracer, and hydraulic data demonstrates the value of combining time-lapse geophysical monitoring with conventional hydrologic measurements for improved characterization of a fractured-rock aquifer. Time-lapse difference-attenuation radar tomography was conducted during saline tracer experiments at the US Geological Survey Fractured Rock Hydrology Research Site near Mirror Lake, Grafton County, New Hampshire, USA. The presence of electrically conductive saline tracer effectively illuminates permeable fractures or pathways for geophysical imaging. The geophysical results guide the construction of three-dimensional numerical models of ground-water flow and solute transport. In an effort to explore alternative explanations for the tracer and tomographic data, a suite of conceptual models involving heterogeneous hydraulic conductivity fields and rate-limited mass transfer are considered. Calibration data include tracer concentrations, the arrival time of peak concentration at the outlet, and steady-state hydraulic head. Results from the coupled inversion procedure suggest that much of the tracer mass migrated outside the three tomographic image planes, and that solute is likely transported by two pathways through the system. This work provides basic and site-specific insights into the control of permeability heterogeneity on ground-water flow and solute transport in fractured rock.ResumenUna interpretación integrada de radar experimental de campo transversal a pozos, trazadores, y datos hidráulicos demuestra el valor de combinar el monitoreo geofísico realizado en periodos de tiempo con mediciones hidrológicas convencionales en la caracterización mejorada de un acuífero rocoso fracturado. Se llevó a cabo tomografía de radar por periodos de tiempo y diferencia de atenuación durante un experimento con trazadores salinos en el sitio de investigación hidrológica de roca fracturada del Servicio Geológico de Estados Unidos cerca del Lago Espejo, Condado Grafton, New Hampshire, USA. La presencia del trazador salino eléctricamente conductivo refleja efectivamente fracturas permeables o trayectorias para imágenes geofísicas. Los resultados geofísicos orientan la construcción de modelos numéricos tri-dimensionales de flujo de agua subterránea y transporte de solutos. En un esfuerzo por explorar explicaciones alternativas para los datos tomográficos y trazadores se considera un conjunto de modelos conceptuales que involucran campos de conductividad hidráulica heterogéneos y transferencias de masa de ritmo limitado. La calibración de datos incluye concentraciones de trazadores, el tiempo de llegada de la concentración pico en la salida, y presión hidráulica en régimen permanente. Los resultados del procedimiento de acoplamiento invertido sugieren que mucho de la masa del trazador migró fuera de los tres planos de imagen tomográfica, y que el soluto es probablemente transportado por dos trayectorias a través del sistema. Este trabajo aporta ideas básicas y específicas del sitio en relación con el control de la heterogeneidad de permeabilidades en el flujo de agua subterránea y transporte de solutos en rocas fracturadas. RésuméUne interprétation intégrée d’études de terrain (radar entre puits, traçages, données hydrauliques) démontre la valeur de la combinaison entre la géophysique des temps finis et les mesures hydrologiques conventionnelles pour une interprétation améliorée d’un aquifère de roche fracturée. La tomographie au radar a été mise en œuvre durant un traçage artificiel au sel au site de recherche sur l’hydrologie des roches fracturées du Service Géologique des US, à proximité du Lac Mirror, Conté de Grafton, Nouvel Hampshire, USA. La présence du traceur électriquement conducteur met en relief, grâce à la géophysique, la présence de fractures ou d’écoulements préférentiels. Les résultats de la géophysique ont permis la construction de modèle hydrogéologique tri-dimensionnel des écoulements et du transport de soluté. Dans l’optique d’explorer des interprétations alternatives des données de traçage et de tomographie, différents modèles conceptuels sont utilisés concernant l’hétérogénéité des conductivités hydrauliques et des taux limités de transferts de solutés. Les données du calibrage incluent les données de concentration du traceur, le temps d’arrivée du pic de restitution et les données piézométriques en régime permanent. Les résultats de la procédure d’inversion couplée suggèrent qu’une quantité très importante du traceur migre au delà de la fenêtre de visualisation des tomographies, et que le soluté est transporté via deux voies d’écoulement préférentiel. Ce travail apporte des connaissances de base et spécifiques au site concernant la distribution de la perméabilité dans l’aquifère et le transport de soluté dans les roches fracturées.

[1]  M. G. Marietta,et al.  Pilot Point Methodology for Automated Calibration of an Ensemble of Conditionally Simulated Transmissivity Fields: 2. Application , 1995 .

[2]  M. Becker,et al.  Tracer transport in fractured crystalline rock: Evidence of nondiffusive breakthrough tailing , 2000 .

[3]  Xian-Huan Wen,et al.  Significance of conditioning to piezometric head data for predictions of mass transport in groundwater modeling , 1996 .

[4]  Brian J. Wagner,et al.  Simultaneous parameter estimation and contaminant source characterization for coupled groundwater flow and contaminant transport modelling , 1992 .

[5]  F. P. Haeni,et al.  Use of time-lapse attenuation-difference radar tomography methods to monitor saline tracer transport in fractured crystalline bedrock , 1998 .

[6]  Perry L. McCarty,et al.  Full‐scale demonstration of in situ cometabolic biodegradation of trichloroethylene in groundwater 1. Dynamics of a recirculating well system , 2002 .

[7]  Frederick D. Day-Lewis,et al.  Time‐lapse imaging of saline‐tracer transport in fractured rock using difference‐attenuation radar tomography , 2003 .

[8]  Brian J. Mailloux,et al.  Hydrogeological characterization of the south oyster bacterial transport site using geophysical data , 2001 .

[9]  A. Binley,et al.  Examination of Solute Transport in an Undisturbed Soil Column Using Electrical Resistance Tomography , 1996 .

[10]  S. M. Gorelick,et al.  Attenuation-difference radar tomography: results of a multiplane experiment at the U.S. Geological Survey Fractured-Rock Research Site, Mirror Lake, New Hampshire , 2000, International Conference on Ground Penetrating Radar.

[11]  Andrew Binley,et al.  High‐resolution characterization of vadose zone dynamics using cross‐borehole radar , 2001 .

[12]  Charles F. Harvey,et al.  Temporal Moment‐Generating Equations: Modeling Transport and Mass Transfer in Heterogeneous Aquifers , 1995 .

[13]  A. Shapiro Effective matrix diffusion in kilometer‐scale transport in fractured crystalline rock , 2001 .

[14]  Claire R. Tiedeman,et al.  Assessing an Open‐Well Aquifer Test in Fractured Crystalline Rock , 2001 .

[15]  S. Gorelick,et al.  Rate‐limited mass transfer or macrodispersion: Which dominates plume evolution at the macrodispersion experiment (MADE) site? , 2000 .

[16]  Allen M. Shapiro,et al.  Crosswell seismic investigation of hydraulically conductive, fractured bedrock near Mirror Lake, New Hampshire , 2002 .

[17]  R. Lytle,et al.  Computerized geophysical tomography , 1979, Proceedings of the IEEE.

[18]  P. Kitanidis Quasi‐Linear Geostatistical Theory for Inversing , 1995 .

[19]  E. Poeter,et al.  Documentation of UCODE; a computer code for universal inverse modeling , 1998 .

[20]  Akhil Datta-Gupta,et al.  Resolution and uncertainty in hydrologic characterization , 1997 .

[21]  Frederick D. Day-Lewis,et al.  Time‐lapse inversion of crosswell radar data , 2002 .

[22]  Frederick D. Day-Lewis,et al.  Identifying fracture‐zone geometry using simulated annealing and hydraulic‐connection data , 2000 .

[23]  G. E. Archie The electrical resistivity log as an aid in determining some reservoir characteristics , 1942 .

[24]  A. Binley,et al.  Cross-hole electrical imaging of a controlled saline tracer injection , 2000 .

[25]  Claire R. Tiedeman,et al.  Characterizing a Ground Water Basin in a New England Mountain and Valley Terrain , 1998 .

[26]  Allen M. Shapiro,et al.  Interpreting tracer breakthrough tailing from different forced‐gradient tracer experiment configurations in fractured bedrock , 2002 .

[27]  O. Olsson,et al.  BOREHOLE RADAR APPLIED TO THE CHARACTERIZATION OF HYDRAULICALLY CONDUCTIVE FRACTURE ZONES IN CRYSTALLINE ROCK1 , 1992 .

[28]  S. Gorelick,et al.  Reliable aquifer remediation in the presence of spatially variable hydraulic conductivity: From data to design , 1989 .

[29]  F. Day‐Lewis,et al.  Assessing the resolution‐dependent utility of tomograms for geostatistics , 2004 .

[30]  Chin-Fu Tsang,et al.  Flow channeling in a single fracture as a two‐dimensional strongly heterogeneous permeable medium , 1989 .

[31]  Gerard T. Schuster,et al.  Resolution limits for crosswell migration and traveltime tomography , 1996 .

[32]  W. Menke Geophysical data analysis : discrete inverse theory , 1984 .

[33]  Steven M. Gorelick,et al.  Coupled process parameter estimation and prediction uncertainty using hydraulic head and concentration data , 1991 .