Optical constants of synthetic potassium, sodium, and hydronium jarosite

Abstract The hydroxy sulfate jarosite [(K,Na,H3O)Fe3(SO4)2(OH)6] has both been discovered on Mars, and is associated with areas of highly acidic runoff on Earth. Because jarosite is extremely sensitive to formation conditions, it is an important target mineral for remote sensing applications. Yet at visible and near infrared (VNIR) wavelengths, where many spacecraft spectrometers collect data, the spectral abundance of a mineral in a mixture is not linearly correlated with the surface abundance of that mineral. Radiative transfer modeling can be used to extract quantitative abundance estimates if the optical constants (the real and imaginary indices of refraction, n and k) for all minerals in the mixture are known. Unfortunately, optical constants for a wide variety of minerals, including sulfates like jarosite, are not available. This is due, in part, to the inherent difficulty in obtaining such data for minerals that tend to crystallize naturally as fine-grained (~10 μm) powders, like many sulfates including jarosite. However, the optical constants of powders can be obtained by inverting the equation of radiative transfer and using it to model laboratory spectra. In this paper, we provide robust n and k data for synthetic potassium, hydronium, and sodium jarosite in the VNIR. We also explicitly describe the calculation procedures (including access to our Matlab code) so that others may obtain optical constants of additional minerals. Expansion of the optical constants library in the VNIR will facilitate the extraction of quantitative mineral abundances, leading to more in-depth evaluations of remote sensing target locations.

[1]  Jean-Pierre Bibring,et al.  Quantitative compositional analysis of martian mafic regions using the MEx/OMEGA reflectance data. 2. Petrological implications , 2009 .

[2]  S. Erard,et al.  Nonlinear spectral mixing: Quantitative analysis of laboratory mineral mixtures , 2004 .

[3]  G. Swayze,et al.  Discovery of jarosite within the Mawrth Vallis region of Mars: Implications for the geologic history of the region , 2009 .

[4]  M. Shepard,et al.  A test of the Hapke photometric model , 2007 .

[5]  Wayde Martens,et al.  NIR spectroscopy of jarosites. , 2005, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[6]  J. Rimstidt,et al.  How long was Meridiani Planum wet? Applying a jarosite stopwatch to determine the duration of aqueous diagenesis , 2009 .

[7]  G. Dipple,et al.  Equilibrium mineral–fluid calculations and their application to the solid solution between alunite and natroalunite in the El Indio–Pascua belt of Chile and Argentina , 2005 .

[8]  C. Baron,et al.  Jarosite formation by an AMD sulphide-oxidizing environmental enrichment: Implications for biomarkers on Mars , 2010 .

[9]  J. Donald Rimstidt,et al.  Efflorescent iron sulfate minerals: Paragenesis, relative stability, and environmental impact , 2003 .

[10]  John F. Mustard,et al.  Quantitative Abundance Estimates From Bidirectional Reflectance Measurements , 1987 .

[11]  B. Hapke Theory of reflectance and emittance spectroscopy , 1993 .

[12]  Gabriele Arnold,et al.  A Model of Spectral Albedo of Particulate Surfaces: Implications for Optical Properties of the Moon , 1999 .

[13]  G. Neukum,et al.  Sulfates and iron oxides in Ophir Chasma, Mars, based on OMEGA and CRISM observations , 2011 .

[14]  V. Barrón,et al.  Transformation of jarosite to hematite in simulated Martian brines , 2006 .

[15]  G. Swayze,et al.  Hydrated mineral stratigraphy of Ius Chasma, Valles Marineris , 2010 .

[16]  J. Rimstidt,et al.  Jarosite as an indicator of water-limited chemical weathering on Mars , 2004, Nature.

[17]  A. S. Madden,et al.  Jarosite dissolution rates and maximum lifetimes in high salinity brines: Implications for Earth and Mars , 2012 .

[18]  R. Clark,et al.  Reflectance spectroscopy: Quantitative analysis techniques for remote sensing applications , 1984 .

[19]  G. Rossman,et al.  Estimated optical constants of gypsum in the regions of weak absorptions: Application of scattering theories and comparisons to independent measurements , 2007 .

[20]  J. Rimstidt,et al.  Na-jarosite dissolution rates: The effect of mineral composition on jarosite lifetimes , 2013 .

[21]  A. Navrotsky,et al.  Synthesis, characterization, and thermochemistry of K-Na-H3O jarosites , 2003 .

[22]  John F. Mustard,et al.  Photometric phase functions of common geologic minerals and applications to quantitative analysis of mineral mixture reflectance spectra , 1989 .

[23]  J. Papike,et al.  Implications of Martian and Terrestrial Jarosite. A Crystal Chemical Perspective , 2006 .

[24]  G. Rossman,et al.  Mid-infrared reflectance spectra and optical constants of six iron oxide/oxyhydroxide phases , 2009 .

[25]  C. Pecharromán,et al.  The infrared dielectric properties of maghemite, γ-Fe2O3, from reflectance measurement on pressed powders , 1995 .

[26]  J. J. Gillis-Davis,et al.  Using Microsoft Excel for Hapke Modeling: A Technique to Simplify Calculations of Optical Constants and Reflectance Spectra , 2010 .

[27]  P. Lucey,et al.  Radiative transfer modeling of lunar highlands spectral classes and relationship to lunar samples , 2007 .

[28]  Paul G. Lucey,et al.  Compositional variations of the lunar crust: Results from radiative transfer modeling of central peak spectra , 2009 .

[29]  S. Baldwin,et al.  Jarosite, argon diffusion, and dating aqueous mineralization on Earth and Mars , 2011 .

[30]  S. J. Sutley,et al.  Using Imaging Spectroscopy To Map Acidic Mine Waste , 2000 .

[31]  H. Sakai,et al.  Mössbauer studies of Jarosite, Mikasaite and Yavapaiite, and implication to their Martian counterparts , 2006 .

[32]  D. Nocera,et al.  Magnetism of pure iron jarosites , 2003 .

[33]  D. Nocera,et al.  Spin frustration in 2D kagomé lattices: a problem for inorganic synthetic chemistry. , 2004, Chemistry.

[34]  B. Hapke,et al.  Bidirectional reflectance spectroscopy: 2. Experiments and observations , 1981 .

[35]  Paul G. Lucey,et al.  Radiative transfer modeling of compositions of lunar pyroclastic deposits , 2006 .

[36]  U. Bonnes,et al.  Jarosite and Hematite at Meridiani Planum from Opportunity's Mössbauer Spectrometer , 2004, Science.

[37]  G. Neukum,et al.  Hydrated minerals in the deposits of Aureum Chaos , 2012 .

[38]  Thomas F. Coleman,et al.  On the convergence of interior-reflective Newton methods for nonlinear minimization subject to bounds , 1994, Math. Program..

[39]  Jerry M. Bigham,et al.  Influence of pH on mineral speciation in a bioreactor simulating acid mine drainage , 1996 .

[40]  B. Hapke Bidirectional reflectance spectroscopy , 1984 .

[41]  J. B. Dalton,et al.  Identification of spectrally similar materials using the USGS Tetracorder algorithm: the calcite–epidote–chlorite problem , 2004 .

[42]  J. Rimstidt,et al.  Jarosite dissolution rates and nanoscale mineralogy , 2012 .

[43]  S. J. Sutley,et al.  Imaging spectroscopy: Earth and planetary remote sensing with the USGS Tetracorder and expert systems , 2003 .

[44]  B. Hapke Bidirectional reflectance spectroscopy: 1. Theory , 1981 .

[45]  Jerry M. Bigham,et al.  SCHWERTMANNITE AND THE CHEMICAL MODELING OF IRON IN ACID SULFATE WATERS , 1996 .

[46]  Roger,et al.  Spectroscopy of Rocks and Minerals , and Principles of Spectroscopy , 2002 .

[47]  Paul G. Lucey,et al.  Model near‐infrared optical constants of olivine and pyroxene as a function of iron content , 1998 .

[48]  A. Navrotsky,et al.  Jarosite stability on Mars , 2004 .

[49]  Paul G. Lucey,et al.  Radiative transfer modeling of near-infrared spectra of lunar mare soils : Theory and measurement , 2008 .

[50]  J. Papike,et al.  Letter. Terrestrial analogs of martian jarosites: Major, minor element systematics and Na-K zoning in selected samples , 2007 .

[51]  Bruce Hapke,et al.  Bidirectional Reflectance Spectroscopy: 5. The Coherent Backscatter Opposition Effect and Anisotropic Scattering , 2002 .

[52]  R. Rye,et al.  “Sour gas” hydrothermal jarosite: ancient to modern acid-sulfate mineralization in the southern Rio Grande Rift , 2005 .

[53]  E. Cloutis,et al.  Spectral reflectance properties of minerals exposed to simulated Mars surface conditions , 2008 .

[54]  A. Navrotsky,et al.  Thermodynamic properties, low-temperature heat-capacity anomalies, and single-crystal X-ray refinement of hydronium jarosite, (H3O)Fe3(SO4)2(OH)6 , 2004 .

[55]  Jillian F. Banfield,et al.  Spectral identification of hydrated sulfates on Mars and comparison with acidic environments on Earth , 2004, International Journal of Astrobiology.

[56]  B. Hapke,et al.  Size-Dependent Scattering Properties of Planetary Regolith Analogs , 2002 .

[57]  Theory of radiative transfer in planetary atmospheres , 1988 .

[58]  Janice L. Bishop,et al.  The visible and infrared spectral properties of jarosite and alunite , 2005 .

[59]  V. Lucarini Kramers-Kronig relations in optical materials research , 2005 .

[60]  J. B. Dalton,et al.  Low temperature optical constants of some hydrated sulfates relevant to planetary surfaces: LOW TEMPERATURE HYDRATED SULFATE n, k , 2012 .

[61]  Paul G. Lucey,et al.  Mineral maps of the Moon , 2003 .

[62]  Lin Li,et al.  Radiative transfer modeling for quantifying lunar surface minerals, particle size, and submicroscopic metallic Fe , 2011 .

[63]  Shyam R Asolekar,et al.  Jarosite characteristics and its utilisation potentials. , 2006, The Science of the total environment.

[64]  P. Lucey,et al.  Radiative transfer mixing models of meteoritic assemblages , 2007 .

[65]  T. Owen,et al.  A spectroscopic study of the surfaces of Saturn's large satellites: H 2 O ice, tholins, and minor constituents , 2005 .

[66]  P. Grindrod,et al.  Topographic, spectral and thermal inertia analysis of interior layered deposits in Iani Chaos, Mars , 2012 .

[67]  Brigette A. Martini,et al.  Imaging spectroscopy of jarosite cement in the Jurassic Navajo Sandstone , 2010 .

[68]  B. Hapke Bidirectional reflectance spectroscopy: 6. Effects of porosity , 2008 .