Demonstrating the Applicability of PAINT to Computationally Expensive Real-life Multiobjective Optimization

We demonstrate the applicability of a new PAINT method to speed up iterations of interactive methods in multiobjective optimization. As our test case, we solve a computationally expensive non-linear, five-objective problem of designing and operating a wastewater treatment plant. The PAINT method interpolates between a given set of Pareto optimal outcomes and constructs a computationally inexpensive mixed integer linear surrogate problem for the original problem. We develop an IND-NIMBUS(R) PAINT module to combine the interactive NIMBUS method and the PAINT method and to find a preferred solution to the original problem. With the PAINT method, the solution process with the NIMBUS method take a comparatively short time even though the original problem is computationally expensive.

[1]  S. Ruzika,et al.  Approximation Methods in Multiobjective Programming , 2005 .

[2]  Kaisa Miettinen,et al.  Synchronous approach in interactive multiobjective optimization , 2006, Eur. J. Oper. Res..

[3]  Berthold Vöcking,et al.  Decision-making based on approximate and smoothed Pareto curves , 2007, Theor. Comput. Sci..

[4]  Kaisa Miettinen,et al.  Cost effective simulation-based multiobjective optimization in the performance of an internal combustion engine , 2008 .

[5]  Kaisa Miettinen,et al.  Nonlinear multiobjective optimization , 1998, International series in operations research and management science.

[6]  O. Larichev Cognitive validity in design of decision‐aiding techniques , 1992 .

[7]  Alexander V. Lotov,et al.  Interactive Decision Maps , 2013 .

[8]  Bernhard Sendhoff,et al.  Crawling along the Pareto front: tales from the practice , 2005, 2005 IEEE Congress on Evolutionary Computation.

[9]  Kathrin Klamroth,et al.  Pareto navigator for interactive nonlinear multiobjective optimization , 2010, OR Spectr..

[10]  Kaisa Miettinen,et al.  Interactive multi-objective optimization for simulated moving bed processes , 2007 .

[11]  Kaisa Miettinen,et al.  Interactive Multiobjective Optimization in Wastewater Treatment Plant Operation and Design , 2010 .

[12]  Alice E. Smith,et al.  Hybrid approach for Pareto front expansion in heuristics , 2011, J. Oper. Res. Soc..

[13]  Kaisa Miettinen,et al.  Wastewater treatment: New insight provided by interactive multiobjective optimization , 2011, Decis. Support Syst..

[14]  Kaisa Miettinen,et al.  PAINT : An Interpolation method for Computationally Expensive Multiobjective Optimization Problems , 2011 .

[15]  Alexander V. Lotov,et al.  Hybrid adaptive methods for approximating a nonconvex multidimensional Pareto frontier , 2006 .

[16]  M Monz,et al.  Pareto navigation—algorithmic foundation of interactive multi-criteria IMRT planning , 2008, Physics in medicine and biology.

[17]  Kaisa Miettinen,et al.  Introduction to Multiobjective Optimization: Noninteractive Approaches , 2008, Multiobjective Optimization.

[18]  Kaisa Miettinen,et al.  Interactive multiobjective optimization for anatomy-based three-dimensional HDR brachytherapy , 2010, Physics in medicine and biology.

[19]  Kaisa Miettinen,et al.  Nonlinear Interactive Multiobjective Optimization Method for Radiotherapy Treatment Planning with Boltzmann Transport Equation , 2009 .

[20]  Kaisa Miettinen,et al.  IND-NIMBUS for Demanding Interactive Multiobjective Optimization , 2006 .

[21]  Vesa Ojalehto,et al.  An interactive multi-objective approach to heat exchanger network synthesis , 2010, Comput. Chem. Eng..

[22]  A. Wierzbicki On the completeness and constructiveness of parametric characterizations to vector optimization problems , 1986 .

[23]  John W. Eaton,et al.  Gnu Octave Manual , 2002 .

[24]  K. Miettinen,et al.  Interactive bundle-based method for nondifferentiable multiobjeective optimization: nimbus § , 1995 .

[25]  Kaisa Miettinen,et al.  Interactive multiobjective optimization system WWW-NIMBUS on the Internet , 2000, Comput. Oper. Res..

[26]  Kaisa Miettinen,et al.  Multiobjective optimization of an ultrasonic transducer using NIMBUS. , 2006, Ultrasonics.

[27]  Kaisa Miettinen,et al.  Efficient evolutionary approach to approximate the Pareto-optimal set in multiobjective optimization, UPS-EMOA , 2010, Optim. Methods Softw..

[28]  Pascal Van Hentenryck The OPL optimization programming language , 1999 .

[29]  Andrzej P. Wierzbicki,et al.  The Use of Reference Objectives in Multiobjective Optimization , 1979 .

[30]  Pekka Korhonen,et al.  Behavioral Issues in MCDM: Neglected Research Questions , 1996 .

[31]  K. Miettinen,et al.  Interactive Solution Approach to a Multiobjective Optimization Problem in a Paper Machine Headbox Design , 2003 .

[32]  Kaisa Miettinen,et al.  Constructing a Pareto front approximation for decision making , 2011, Math. Methods Oper. Res..

[33]  Wei Ren,et al.  A simulation-based multi-objective design optimization of electronic packages under thermal cycling and bending , 2004, Microelectron. Reliab..

[34]  T. Simpson,et al.  Efficient Pareto Frontier Exploration using Surrogate Approximations , 2000 .

[35]  椹木 義一,et al.  Theory of multiobjective optimization , 1985 .

[36]  W. Price Global optimization by controlled random search , 1983 .

[37]  Kaisa Miettinen,et al.  Introduction to Multiobjective Optimization: Interactive Approaches , 2008, Multiobjective Optimization.

[38]  Hirotaka Nakayama,et al.  Sequential Approximate Multiobjective Optimization Using Computational Intelligence , 2009, Vector Optimization.

[39]  J B Copp,et al.  Wastewater treatment modelling in practice: a collaborative discussion of the state of the art. , 2009, Water science and technology : a journal of the International Association on Water Pollution Research.

[40]  Kaisa Miettinen,et al.  Using Interactive Multiobjective Optimization in Continuous Casting of Steel , 2007 .