Phase-separation perspective on dynamic heterogeneities in glass-forming liquids.

We study dynamic heterogeneities in a model glass former whose overlap with a reference configuration is constrained to a fixed value. We find that the system phase separates into regions of small and large overlap, indicating that a nonzero surface tension plays an important role in the formation of dynamical heterogeneities. We calculate an appropriate thermodynamic potential and find evidence of a Maxwell construction consistent with a spinodal decomposition of two phases. Our results suggest that even in standard, unconstrained systems dynamic heterogeneities are the expression of an ephemeral phase-separating regime ruled by a finite surface tension.

[1]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.