On the hardness of computing an average curve

We study the complexity of clustering curves under $k$-median and $k$-center objectives in the metric space of the Fr\'echet distance and related distance measures. Building upon recent hardness results for the minimum-enclosing-ball problem under the Fr\'echet distance, we show that also the $1$-median problem is NP-hard. Furthermore, we show that the $1$-median problem is W[1]-hard with the number of curves as parameter. We show this under the discrete and continuous Fr\'echet and Dynamic Time Warping (DTW) distance. This yields an independent proof of an earlier result by Bulteau et al. from 2018 for a variant of DTW that uses squared distances, where the new proof is both simpler and more general. On the positive side, we give approximation algorithms for problem variants where the center curve may have complexity at most $\ell$ under the discrete Fr\'echet distance. In particular, for fixed $k,\ell$ and $\varepsilon$, we give $(1+\varepsilon)$-approximation algorithms for the $(k,\ell)$-median and $(k,\ell)$-center objectives and a polynomial-time exact algorithm for the $(k,\ell)$-center objective.

[1]  Toni Giorgino,et al.  Computing and Visualizing Dynamic Time Warping Alignments in R: The dtw Package , 2009 .

[2]  Shi Li,et al.  Approximating k-median via pseudo-approximation , 2012, STOC '13.

[3]  Nimrod Megiddo,et al.  On the Complexity of Some Common Geometric Location Problems , 1984, SIAM J. Comput..

[4]  Ke Chen,et al.  On Coresets for k-Median and k-Means Clustering in Metric and Euclidean Spaces and Their Applications , 2009, SIAM J. Comput..

[5]  Rolf Niedermeier,et al.  Faster Binary Mean Computation Under Dynamic Time Warping , 2020, CPM.

[6]  Tomás Feder,et al.  Optimal algorithms for approximate clustering , 1988, STOC '88.

[7]  Krzysztof Pietrzak,et al.  On the parameterized complexity of the fixed alphabet shortest common supersequence and longest common subsequence problems , 2003, J. Comput. Syst. Sci..

[8]  Joachim Gudmundsson,et al.  Approximating $(k,\ell)$-center clustering for curves , 2018, 1805.01547.

[9]  H. Mannila,et al.  Computing Discrete Fréchet Distance ∗ , 1994 .

[10]  Esko Ukkonen,et al.  The Shortest Common Supersequence Problem over Binary Alphabet is NP-Complete , 1981, Theor. Comput. Sci..

[11]  Alexis Sarda-Espinosa,et al.  Comparing Time-Series Clustering Algorithms in R Using the dtwclust Package , 2017 .

[12]  Helmut Alt,et al.  Computing the Fréchet distance between two polygonal curves , 1995, Int. J. Comput. Geom. Appl..

[13]  Kamesh Munagala,et al.  Local Search Heuristics for k-Median and Facility Location Problems , 2004, SIAM J. Comput..

[14]  Pasi Fränti,et al.  Time-series clustering by approximate prototypes , 2008, ICPR.

[15]  Sergey Bereg,et al.  Simplifying 3D Polygonal Chains Under the Discrete Fréchet Distance , 2008, LATIN.

[16]  Christian Sohler,et al.  Clustering time series under the Fréchet distance , 2015, SODA.

[17]  Bernd Gärtner,et al.  Fast Smallest-Enclosing-Ball Computation in High Dimensions , 2003, ESA.

[18]  Amin Saberi,et al.  A new greedy approach for facility location problems , 2002, STOC '02.

[19]  Vijay V. Vazirani,et al.  Approximation algorithms for metric facility location and k-Median problems using the primal-dual schema and Lagrangian relaxation , 2001, JACM.

[20]  Teofilo F. GONZALEZ,et al.  Clustering to Minimize the Maximum Intercluster Distance , 1985, Theor. Comput. Sci..

[21]  Bernard Chazelle,et al.  On a circle placement problem , 1986, Computing.

[22]  L. Gupta,et al.  Nonlinear alignment and averaging for estimating the evoked potential , 1996, IEEE Transactions on Biomedical Engineering.

[23]  Rolf Niedermeier,et al.  Tight Hardness Results for Consensus Problems on Circular Strings and Time Series , 2018, SIAM J. Discret. Math..

[24]  Rolf Niedermeier,et al.  Exact Mean Computation in Dynamic Time Warping Spaces , 2018, SDM.

[25]  Shi Li,et al.  Approximating k-Median via Pseudo-Approximation , 2016, SIAM J. Comput..

[26]  Pierre Gançarski,et al.  Summarizing a set of time series by averaging: From Steiner sequence to compact multiple alignment , 2012, Theor. Comput. Sci..

[27]  Kevin Buchin,et al.  klcluster: Center-based Clustering of Trajectories , 2019, SIGSPATIAL/GIS.

[28]  Nimrod Megiddo,et al.  Linear-time algorithms for linear programming in R3 and related problems , 1982, 23rd Annual Symposium on Foundations of Computer Science (sfcs 1982).