Statistical physics of vehicular traffic and some related systems

[1]  M. Fisher,et al.  Phase Transitions and Critical Phenomena , 2021, Statistical and Thermal Physics.

[2]  S. Redner,et al.  Introduction To Percolation Theory , 2018 .

[3]  V. Popkov,et al.  Steady-state selection in driven diffusive systems with open boundaries , 1999, cond-mat/0002242.

[4]  Tomohiro Sasamoto,et al.  One-dimensional partially asymmetric simple exclusion process with open boundaries: Orthogonal polynomials approach , 1999 .

[5]  B. Schönfisch,et al.  Synchronous and asynchronous updating in cellular automata. , 1999, Bio Systems.

[6]  N. Mitarai,et al.  Stability analysis of optimal velocity model for traffic and granular flow under open boundary condition , 1999, cond-mat/9905315.

[7]  R. Dickman,et al.  Nonequilibrium Phase Transitions in Lattice Models , 1999 .

[8]  H. Blok,et al.  Synchronous versus asynchronous updating in the ''game of Life'' , 1999 .

[9]  H. Fuks Exact results for deterministic cellular automata traffic models. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[10]  Dietrich E. Wolf,et al.  Cellular automata for traffic simulations , 1999 .

[11]  G. Parisi Complex Systems: a Physicist's Viewpoint , 1999, cond-mat/0205297.

[12]  Katsuhiro Nishinari,et al.  A new deterministic CA model for traffic flow with multiple states , 1999 .

[13]  B. Nienhuis,et al.  Exact stationary state for an asymmetric exclusion process with fully parallel dynamics. , 1998, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[14]  S. Lubeck,et al.  Critical behavior of a traffic flow model , 1998, cond-mat/9812212.

[15]  A. Schadschneider,et al.  On the ubiquity of matrix-product states in one-dimensional stochastic processes with boundary interactions , 1998, cond-mat/9812201.

[16]  János Kertész,et al.  Correlation functions in the Nagel-Schreckenberg model , 1998 .

[17]  P. Hui,et al.  Cellular automaton models of driven diffusive Frenkel-Kontorova-type systems. , 1998, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[18]  A. Schadschneider,et al.  Spatio-temporal organization of vehicles in a cellular automata model of traffic with `slow-to-start' rule , 1998, cond-mat/9812148.

[19]  B. Kerner EXPERIMENTAL FEATURES OF SELF-ORGANIZATION IN TRAFFIC FLOW , 1998 .

[20]  M. Evans,et al.  Exact Solution of a Cellular Automaton for Traffic , 1998, cond-mat/9810306.

[21]  A. Schadschneider,et al.  DISORDER EFFECTS IN CELLULAR AUTOMATA FOR TWO-LANE TRAFFIC , 1998, cond-mat/9810184.

[22]  D. Helbing,et al.  Gas-Kinetic-Based Traffic Model Explaining Observed Hysteretic Phase Transition , 1998, cond-mat/9810277.

[23]  Eugene R. Speer,et al.  REFLECTION INVARIANCE OF THE CURRENT IN THE TOTALLY ASYMMETRIC SIMPLE EXCLUSION PROCESS WITH DISORDER , 1998 .

[24]  D. Helbing,et al.  Phase diagram of tra c states in the presence of inhomogeneities , 1998, cond-mat/9809324.

[25]  Arnab Majumdar,et al.  Distribution of time-headways in a particle-hopping model of vehicular traffic , 1998 .

[26]  G. Schütz,et al.  Phase diagram of one-dimensional driven lattice gases with open boundaries , 1998 .

[27]  M. Schreckenberg,et al.  Density waves and jamming transition in cellular automaton models for traffic flow , 1998, cond-mat/9808152.

[28]  Toru Ohira,et al.  PHASE TRANSITION IN A COMPUTER NETWORK TRAFFIC MODEL , 1998 .

[29]  Katsuhiro Nishinari,et al.  Analytical properties of ultradiscrete Burgers equation and rule-184 cellular automaton , 1998 .

[30]  T. Nagatani,et al.  Burgers equation for kinetic clustering in traffic flow , 1998 .

[31]  L. G. Tilstra,et al.  Synchronous asymmetric exclusion processes , 1998 .

[32]  H. Emmerich,et al.  From modified KdV-equation to a second-order cellular automaton for traffic flow , 1998 .

[33]  H. Chau,et al.  An improved upper bound for the critical car density of the two-dimensional Biham–Middleton–Levine traffic model , 1998 .

[34]  D. Helbing,et al.  Coherent moving states in highway traffic , 1998, Nature.

[35]  B. Wang,et al.  Analytical results for the steady state of traffic flow models with stochastic delay , 1998, cond-mat/9804269.

[36]  Akinori Awazu,et al.  Dynamics of Two Equivalent Lanes Traffic Flow Model: Self-Organization of the Slow Lane and Fast Lane , 1998 .

[37]  Tsuyoshi Horiguchi,et al.  Numerical simulations for traffic-flow models on a decorated square lattice , 1998 .

[38]  B. Derrida,et al.  Exact Large Deviation Function in the Asymmetric Exclusion Process , 1998, cond-mat/9809044.

[39]  H. Gutowitz,et al.  Cellular automaton model for bidirectional traffic , 1998, cond-mat/9801024.

[40]  K. Nagel,et al.  A simplified cellular automation model for city traffic , 1997, cond-mat/9801022.

[41]  B. Kerner,et al.  EXPERIMENTAL PROPERTIES OF PHASE TRANSITIONS IN TRAFFIC FLOW , 1997 .

[42]  Lei Wang,et al.  One-Dimensional Fukui-Ishibashi Traffic Flow Model , 1997 .

[43]  Kai Nagel,et al.  Two-lane traffic rules for cellular automata: A systematic approach , 1997, cond-mat/9712196.

[44]  A. Schadschneider,et al.  The Asymmetric Exclusion Process: Comparison of Update Procedures , 1997, cond-mat/9710316.

[45]  K. Gavrilov Microstructure and microdynamics of uninterrupted traffic flow , 1997 .

[46]  Mitsugu Matsushita Hisao Hayakawa,et al.  4/3 Law of Granular Particles Flowing through a Vertical Pipe , 1997, cond-mat/9802174.

[47]  M. Schreckenberg,et al.  Density fluctuations and phase transition in the Nagel-Schreckenberg traffic flow model , 1997, cond-mat/9709116.

[48]  D. Kim,et al.  Two-way traffic flow: Exactly solvable model of traffic jam , 1997, cond-mat/9708006.

[49]  Takashi Nagatani,et al.  Instability of a Traffic Jam Induced by Slowing Down , 1997 .

[50]  G. Schütz Exact solution of the master equation for the asymmetric exclusion process , 1997 .

[51]  D. Chowdhury,et al.  Particle-hopping models of vehicular traffic: Distributions of distance headways and distance between jams , 1997, cond-mat/9706094.

[52]  P. Hui,et al.  One-Dimensional Traffic Flow Problems: A Microscopic Approach , 1997 .

[53]  S. M. Bhattacharjee,et al.  Deadlocks and waiting times in traffic jam , 1997, cond-mat/9704217.

[54]  Nino Boccara,et al.  Car accidents and number of stopped cars due to road blockage on a one-lane highway , 1997, adap-org/9704001.

[55]  Leonardo Gregory Brunnet,et al.  CELLULAR AUTOMATON BLOCK MODEL OF TRAFFIC IN A CITY , 1997 .

[56]  M. Wadati,et al.  Dynamic matrix product ansatz and Bethe ansatz equation for asymmetric exclusion process with periodic boundary , 1997 .

[57]  Yoshihiro Ishibashi,et al.  Effect of Delay in Restarting of Stopped Cars in a One-Dimensional Traffic Model , 1997 .

[58]  Vladimir Privman,et al.  Nonequilibrium Statistical Mechanics in One Dimension: Experimental Results , 1997 .

[59]  Michael Schreckenberg,et al.  Particle hopping models for two-lane traffic with two kinds of vehicles: Effects of lane-changing rules , 1997 .

[60]  G. Schütz The Heisenberg Chain as a Dynamical Model for Protein Synthesis - Some Theoretical and Experimental Results , 1997 .

[61]  Lehmann Distribution function properties and the fundamental diagram in kinetic traffic flow theory. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[62]  N. Rajewsky,et al.  Exact results for one-dimensional cellular automata with different types of updates , 1996, cond-mat/9611154.

[63]  H. Hinrichsen,et al.  Deterministic exclusion process with a stochastic defect: matrix-product ground states , 1996, cond-mat/9611134.

[64]  T. Nagatani Gas Kinetic Approach to Two-Dimensional Traffic Flow , 1996 .

[65]  Takashi Nagatani,et al.  Kinetics of Clustering and Acceleration in 1D Traffic Flow , 1996 .

[66]  S. Sandow,et al.  Matrix product eigenstates for one-dimensional stochastic models and quantum spin chains , 1996, cond-mat/9610029.

[67]  János Kertész,et al.  The green wave model of two-dimensional traffic: Transitions in the flow properties and in the geometry of the traffic jam , 1996 .

[68]  Yoshihiro Ishibashi,et al.  Phase Diagram for the Traffic Model of Two One-Dimensional Roads with a Crossing , 1996 .

[69]  K. Mallick,et al.  Shocks in the asymmetry exclusion model with an impurity , 1996 .

[70]  Yoshihiro Ishibashi,et al.  Flow of Cars Crossing with Unequal Velocities in a Two-Dimensional Cellular Automaton Model. , 1996 .

[71]  Pak Ming Hui,et al.  Mean Field Theory of Traffic Flow Problems with Overpasses and Asymmetric Distributions of Cars , 1996 .

[72]  Takashi Nagatani,et al.  Propagation of Jams in Congested Traffic Flow , 1996 .

[73]  M. Fukui,et al.  Traffic Flow in 1D Cellular Automaton Model Including Cars Moving with High Speed , 1996 .

[74]  A. Honecker,et al.  Matrix-product states for a one-dimensional lattice gas with parallel dynamics , 1996, cond-mat/9606053.

[75]  D. Wolf,et al.  Traffic and Granular Flow , 1996 .

[76]  P. Hui,et al.  Cellular automata models of traffic flow along a highway containing a junction , 1996, cond-mat/9605157.

[77]  B. Chopard,et al.  Cellular automata model of car traffic in a two-dimensional street network , 1996 .

[78]  Takahashi,et al.  From soliton equations to integrable cellular automata through a limiting procedure. , 1996, Physical review letters.

[79]  Ramakrishna Ramaswamy,et al.  PAIRWISE BALANCE AND INVARIANT MEASURES FOR GENERALIZED EXCLUSION PROCESSES , 1996 .

[80]  M. Kikuchi,et al.  Density Fluctuations in Traffic Flow , 1996, chao-dyn/9601005.

[81]  H. Hinrichsen Matrix product ground states for exclusion processes with parallel dynamics , 1995, cond-mat/9512172.

[82]  Los Alamos National Lab,et al.  Two lane traffic simulations using cellular automata , 1995, cond-mat/9512119.

[83]  Hu,et al.  1/f noise in a two-lane highway traffic model. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[84]  Steffen Trimper,et al.  Analytical approach to traffic jams , 1995 .

[85]  Pak Ming Hui,et al.  Two-dimensional traffic flow problems in inhomogeneous lattices , 1995 .

[86]  Ernst Rank,et al.  Investigating traffic flow in the presence of hindrances by cellular automata , 1995 .

[87]  T. Poeschel,et al.  A Statistical Approach to Vehicular Traffic , 1995, adap-org/9505001.

[88]  Takashi Nagatani,et al.  Self-Organization in 2D Traffic Flow Model with Jam-Avoiding Drive , 1995 .

[89]  J. Douglas Aspects and applications of the random walk , 1995 .

[90]  P. M. Hui,et al.  Upper Bounds for the Critical Car Densities in Traffic Flow Problems , 1995, adap-org/9502002.

[91]  Pak Ming Hui,et al.  Traffic Flow Problems in One-Dimensional Inhomogeneous Media , 1994 .

[92]  M. Kikuchi,et al.  Coupled-Map Modeling of One-Dimensional Traffic Flow , 1994, cond-mat/9411129.

[93]  Tadaki Shin-ichi,et al.  Dynamical Phase Transition in One Dimensional Traffic Flow Model with Blockage , 1994 .

[94]  Cuesta,et al.  Theoretical approach to two-dimensional traffic flow models. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[95]  Takashi Nagatani,et al.  Traffic jam induced by a crosscut road in a traffic-flow model , 1994 .

[96]  Mukamel,et al.  Asymmetric exclusion model for mixed ionic conductors. , 1994, Physical review. B, Condensed matter.

[97]  T. Nagatani Effect of Jam-Avoiding Turn on Jamming Transition in Two-Dimensional Traffic Flow Model , 1994 .

[98]  Gérard Weisbuch,et al.  Complex Systems Dynamics , 1994 .

[99]  Yoshihiro Ishibashi,et al.  Evolution of Traffic Jam in Traffic Flow Model , 1993 .

[100]  Nagatani Jamming transition in the traffic-flow model with two-level crossings. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[101]  M. Henkel,et al.  Boundary-induced phase transitions in equilibrium and non-equilibrium systems , 1993, hep-th/9309010.

[102]  Takashi Nagatani,et al.  Jamming transition induced by a stagnant street in a traffic-flow model , 1993 .

[103]  T. Nagatani Power-law distribution and 1/f noise of waiting time near traffic-jam threshold , 1993 .

[104]  Takashi Nagatani,et al.  Anisotropic Effect on Jamming Transition in Traffic-Flow Model , 1993 .

[105]  G. Schütz,et al.  Generalized Bethe ansatz solution of a one-dimensional asymmetric exclusion process on a ring with blockage , 1993 .

[106]  B. Derrida,et al.  Exact solution of a 1d asymmetric exclusion model using a matrix formulation , 1993 .

[107]  Schütz,et al.  Time-dependent correlation functions in a one-dimensional asymmetric exclusion process. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[108]  E. Domany,et al.  Phase transitions in an exactly soluble one-dimensional exclusion process , 1993, cond-mat/9303038.

[109]  M. Droz,et al.  Reaction - diffusion processes, critical dynamics and quantum chains , 1993, hep-th/9302112.

[110]  Spohn,et al.  Bethe solution for the dynamical-scaling exponent of the noisy Burgers equation. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[111]  Krug,et al.  Boundary-induced phase transitions in driven diffusive systems. , 1991, Physical review letters.

[112]  Adolf D. May,et al.  Traffic Flow Fundamentals , 1989 .

[113]  G. Le Caër,et al.  Comparison between simultaneous and sequential updating in 2n+1−1 cellular automata , 1989 .

[114]  Yu. A. Izyumov,et al.  Statistical Mechanics of Magnetically Ordered Systems , 1988 .

[115]  M Cremer,et al.  A fast simulation model for traffic flow on the basis of Boolean operations , 1986 .

[116]  Stephen Wolfram,et al.  Theory and Applications of Cellular Automata , 1986 .

[117]  Howard Reiss,et al.  Thermodynamic treatment of nonphysical systems: Formalism and an example (Single-lane traffic) , 1986 .

[118]  T. Liggett Interacting Particle Systems , 1985 .

[119]  E. Baker,et al.  Biopolymers , 1984 .

[120]  Benoit B. Mandelbrot,et al.  Fractal Geometry of Nature , 1984 .

[121]  B. Huberman,et al.  Digital dynamics and the simulation of magnetic systems , 1983 .

[122]  G. Whitham,et al.  Linear and Nonlinear Waves , 1976 .

[123]  Johannes Martinus Burgers,et al.  The Nonlinear Diffusion Equation: Asymptotic Solutions and Statistical Problems , 1974 .

[124]  M. R. C. McDowell,et al.  Kinetic Theory of Vehicular Traffic , 1972 .

[125]  N. Goldenfeld Lectures On Phase Transitions And The Renormalization Group , 1972 .

[126]  H. Stanley,et al.  Introduction to Phase Transitions and Critical Phenomena , 1972 .

[127]  W. Feller,et al.  An Introduction to Probability Theory and Its Applications, Vol. 1 , 1967 .

[128]  D C Gazis,et al.  Mathematical Theory of Automobile Traffic: Improved understanding and control of traffic flow has become a fast-growing area of scientific research. , 1967, Science.

[129]  William Feller,et al.  An Introduction to Probability Theory and Its Applications , 1967 .

[130]  Kerson Huang Statistical Mechanics, 2nd Edition , 1963 .

[131]  Robert Herman,et al.  Vehicular Traffic Flow , 1963 .

[132]  W. Feller An Introduction to Probability Theory and Its Applications , 1959 .

[133]  L. A. Pipes An Operational Analysis of Traffic Dynamics , 1953 .

[134]  D. de Cogan,et al.  Cellular Automata Modelling of Physical Systems, by Bastien Chopard & Michel Droz, Cambridge University Press (Aléa Saclay Collection), 336 pp., ISBN 0‐521‐46168‐5, hardback, £55 , 2000 .

[135]  Book Review: Nonequilibrium Statistical Mechanics in One Dimension , 1999 .

[136]  Stefan Krauss,et al.  MICROSCOPIC MODELING OF TRAFFIC FLOW: INVESTIGATION OF COLLISION FREE VEHICLE DYNAMICS. , 1998 .

[137]  D. Helbing,et al.  VERKEHRSDYNAMIK. NEUE PHYSIKALISCHE MODELLIERUNGSKONZEPTE , 1997 .

[138]  E. Bonabeau How nature works: The science of self-organized criticality (copernicus) , 1997 .

[139]  K. Nagel,et al.  Realistic multi-lane traffic rules for cellular automata , 1997 .

[140]  Jürgen Parisi,et al.  Nonlinear physics of complex systems : current status and future trends , 1996 .

[141]  Ernst Rank,et al.  An Improved Cellular Automaton Model for Traffic Flow Simulation , 1996 .

[142]  T. Nagatani Effect of car acceleration on traffic flow in 1D stochastic CA model , 1996 .

[143]  G. Vojta,et al.  Fractal Concepts in Surface Growth , 1996 .

[144]  Per Bak,et al.  How Nature Works , 1996 .

[145]  Hui,et al.  Two-dimensional traffic flow problems with faulty traffic lights. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[146]  B. Henderson-Sellers,et al.  Mathematics and Computers in Simulation , 1995 .

[147]  金子 邦彦 Theory and applications of coupled map lattices , 1993 .

[148]  H. Spohn Large Scale Dynamics of Interacting Particles , 1991 .

[149]  W. Arthur,et al.  The Economy as an Evolving Complex System II , 1988 .

[150]  Kendall Preston,et al.  Modern Cellular Automata , 1984, Advanced Applications in Pattern Recognition.

[151]  J. J. Fearnsides,et al.  Research Directions in Computer Control of Urban Traffic Systems , 1979 .

[152]  G. B. Whitham,et al.  Lectures on wave propagation , 1979 .

[153]  D. L. Gerlough,et al.  Traffic flow theory : a monograph , 1975 .

[154]  D H Hoefs,et al.  UNTERSUCHUNG DES FAHRVERHALTENS IN FAHRZEUGKOLONNEN , 1972 .

[155]  George A. Bekey,et al.  Mathematical models of public systems , 1971 .

[156]  E. F. Codd,et al.  Cellular automata , 1968 .

[157]  P. A. P. Moran,et al.  An introduction to probability theory , 1968 .

[158]  K. Federhofer,et al.  Österreichisches Ingenieur-Archiv , 1957 .