Comparison of Two Approaches for Detection and Estimation of Radioactive Sources

This paper describes and compares two approaches for the problem of determining the number of radioactive point sources that potentially exist in a designated area and estimating the parameters of these sources (their locations and strengths) using a small number of noisy radiological measurements provided by a radiation sensor. Both approaches use the Bayesian inferential methodology but sample the posterior distribution differently: one approach uses importance sampling with progressive correction and the other a reversible-jump Markov chain Monte Carlo sampling. The two approaches also use different measurement models for the radiation data. The first approach assumes a perfect knowledge of the data model and the average background radiation level, whereas the second approach quantifies explicitly the uncertainties in the model specification and in the average background radiation level. The performances of the two approaches are compared using experimental data acquired during a recent radiological field trial.

[1]  D. Torney,et al.  Distributed sensor networks for detection of mobile radioactive sources , 2004, IEEE Transactions on Nuclear Science.

[2]  B. Ristic,et al.  On Localisation of a Radiological Point Source , 2007, 2007 Information, Decision and Control.

[3]  Alan D. Martin,et al.  An Introduction to Radiation Protection , 1996, Springer US.

[4]  Mark R. Morelande,et al.  Detection and parameter estimation of multiple radioactive sources , 2007, 2007 10th International Conference on Information Fusion.

[5]  Mark R. Morelande,et al.  Information driven search for point sources of gamma radiation , 2010, Signal Process..

[6]  D. Torney,et al.  Radioactive source detection by sensor networks , 2005, IEEE Transactions on Nuclear Science.

[7]  Branko Ristic,et al.  Experimental verification of evolutionary estimation algorithms for radioactive source localisation , 2009, International Conference on Intelligent Sensors, Sensor Networks and Information Processing.

[8]  J. Kirkwood Statistical Mechanics of Fluid Mixtures , 1935 .

[9]  Christian Musso,et al.  Improving Regularised Particle Filters , 2001, Sequential Monte Carlo Methods in Practice.

[10]  Branko Ristic,et al.  Beyond the Kalman Filter: Particle Filters for Tracking Applications , 2004 .

[11]  T. Loredo From Laplace to Supernova SN 1987A: Bayesian Inference in Astrophysics , 1990 .

[12]  P. Green Reversible jump Markov chain Monte Carlo computation and Bayesian model determination , 1995 .

[13]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[14]  R. Baierlein Probability Theory: The Logic of Science , 2004 .

[15]  Ronald P. S. Mahler,et al.  Statistical Multisource-Multitarget Information Fusion , 2007 .

[16]  S. E. Ahmed,et al.  Markov Chain Monte Carlo: Stochastic Simulation for Bayesian Inference , 2008, Technometrics.

[17]  J. Rissanen,et al.  Modeling By Shortest Data Description* , 1978, Autom..

[18]  S. Landsberger,et al.  Measurement and detection of radiation , 1983 .

[19]  Eugene Yee,et al.  Theory for Reconstruction of an Unknown Number of Contaminant Sources using Probabilistic Inference , 2008 .

[20]  Mark R. Morelande,et al.  Radiological Source Detection and Localisation Using Bayesian Techniques , 2009, IEEE Transactions on Signal Processing.

[21]  Kenneth R. Muske,et al.  Least squares estimation techniques for position tracking of radioactive sources , 2001, Autom..

[22]  D. Stephens,et al.  Detection of moving radioactive sources using sensor networks , 2004, IEEE Transactions on Nuclear Science.

[23]  G. Kitagawa Monte Carlo Filter and Smoother for Non-Gaussian Nonlinear State Space Models , 1996 .