POINTED HOPF ACTIONS ON CENTRAL SIMPLE DIVISION ALGEBRAS

We examine actions of finite-dimensional pointed Hopf algebras on central simple division algebras in characteristic 0. (By a Hopf action we mean a Hopf module algebra structure.) In all examples considered, we show that the given Hopf algebra does admit a faithful action on a central simple division algebra, and we construct such a division algebra. This is in contrast to earlier work of Etingof and Walton, in which it was shown that most pointed Hopf algebras do not admit faithful actions on fields. We consider all bosonizations of Nichols algebras of finite Cartan type, small quantum groups, generalized Taft algebras with non-nilpotent skew primitive generators, and an example of non-Cartan type.

[1]  A. Masuoka Abelian and non-abelian second cohomologies of quantized enveloping algebras , 2007, 0708.1982.

[2]  Warren D. Nichols Bialgebras of type one , 1978 .

[3]  I. Angiono DISTINGUISHED PRE-NICHOLS ALGEBRAS , 2014, 1405.6681.

[4]  P. Etingof,et al.  Finite dimensional Hopf actions on central division algebras , 2015, 1508.01251.

[5]  G. Lusztig Quantum groups at roots of 1 , 1990 .

[6]  Robert G Heyneman,et al.  Reflexivity and coalgebras of finite type , 1974 .

[7]  I. Heckenberger Classification of arithmetic root systems , 2006, math/0605795.

[8]  V. Artamonov Actions of Pointed Hopf Algebras on Quantum Torus , 2005, ANNALI DELL UNIVERSITA DI FERRARA.

[9]  Kenneth A. Brown,et al.  Lectures on Algebraic Quantum Groups , 2002 .

[10]  George Lusztig,et al.  Introduction to Quantum Groups , 1993 .

[11]  C. Negron Braided Hochschild cohomology and Hopf actions , 2015, Journal of Noncommutative Geometry.

[12]  H. Schneider,et al.  Finite Quantum Groups and Cartan Matrices , 2000 .

[13]  M. Graña On Nichols algebras of low dimension , 2000, math/0004062.

[14]  On the classification of finite-dimensional pointed Hopf algebras , 2005, math/0502157.

[15]  Davida Fischman,et al.  Hopf Galois extensions, smash products, and Morita equivalence , 1990 .

[16]  S. Witherspoon,et al.  Cohomology of finite‐dimensional pointed Hopf algebras , 2009, 0902.0801.

[17]  H. Schneider,et al.  Finite quantum groups over abelian groups of prime exponent , 2000, math/0009119.

[18]  Robert L. Wilson,et al.  On antipodes in pointed Hopf algebras , 1974 .

[19]  The Weyl groupoid of a Nichols algebra of diagonal type , 2004, math/0411477.

[20]  P. Etingof,et al.  Pointed Hopf actions on fields, II , 2015, 1511.09320.

[21]  P. Etingof,et al.  Finite dimensional Hopf actions on algebraic quantizations , 2016, 1605.00560.

[22]  A. Masuoka,et al.  Faithful Flatness of Hopf Algebras , 1994 .

[23]  V. Kac,et al.  Representations of quantum groups at roots of 1 , 1992 .

[24]  I. Angiono Nichols algebras of diagonal type , 2011, Hopf Algebras and Root Systems.

[25]  Susan Montgomery,et al.  Hopf algebras and their actions on rings , 1993 .

[26]  S. Skryabin,et al.  The Goldie Theorem for H-semiprime algebras , 2006 .

[27]  P. Etingof Galois bimodules and integrality of PI comodule algebras over invariants , 2013, 1306.3821.

[28]  I. Angiono,et al.  Liftings of Nichols algebras of diagonal type II: all liftings are cocycle deformations , 2016, Selecta Mathematica.

[29]  Lusztig isomorphisms for Drinfel'd doubles of bosonizations of Nichols algebras of diagonal type , 2007, 0710.4521.

[30]  P. Etingof,et al.  POINTED HOPF ACTIONS ON FIELDS, I , 2014, 1403.4673.

[31]  N. Andruskiewitsch,et al.  On finite dimensional Nichols algebras of diagonal type , 2017, Tensor Categories and Hopf Algebras.