Micromechanical modelling of the effect of plastic deformation on the mechanical behaviour in pseudoelastic shape memory alloys

Abstract Except for the recoverable strain induced by phase transformation, NiTi alloys are very ductile even in the martensite phase. The purpose of the present paper is to study the influence of permanent deformation, which results from plastic deformation of martensite, on the mechanical behaviour of pseudoelastic NiTi alloys. Based on phenomenological theory of martensitic transformation and crystal plasticity, a new three dimensional micromechanical model is proposed by coupling both the slip and twinning deformation mechanisms. The present model is implemented as User MATerial subroutine (UMAT) into ABAQUS/Standard to study the influences of plastic deformation on the stress and strain fields, and on the evolution of martensite transformation. Results show that with the increasing of plastic deformation the residual strain increases and the phase transformation stress–strain curves from the martensite to austenite become steeper and less obvious. Both characteristics, stabilisation of martensite and impedance of the reverse transformation, due to plastic deformation are captured.

[1]  Etienne Patoor,et al.  Strain rate sensitivity in superelasticity , 2000 .

[2]  Dimitris C. Lagoudas,et al.  Thermomechanical characterization of NiTiCu and NiTi SMA actuators: influence of plastic strains , 2000 .

[3]  S. Miyazaki,et al.  CRYSTAL STRUCTURE OF THE MARTENSITE IN Ti-49.2 at.%Ni ALLOY ANALYZED BY THE SINGLE CRYSTAL X-RAY DIFFRACTION METHOD , 1985 .

[4]  L. Schetky Shape-memory alloys , 1979 .

[5]  J. Shaw,et al.  Thermomechanical aspects of NiTi , 1995 .

[6]  Ken Gall,et al.  Compressive response of NiTi single crystals , 2000, Acta Materialia.

[7]  K. Gall,et al.  Fracture of precipitated NiTi shape memory alloys , 2001 .

[8]  Miinshiou Huang,et al.  A Multivariant model for single crystal shape memory alloy behavior , 1998 .

[9]  T. P. G. Thamburaja Constitutive equations for martensitic reorientation and detwinning in shape-memory alloys , 2005 .

[10]  L. Anand,et al.  Inelastic deformation of polycrystalline face centered cubic materials by slip and twinning , 1998 .

[11]  G. Eggeler,et al.  Pseudoelastic cycling of ultra-fine-grained NiTi shape-memory wires , 2005 .

[12]  J. Shaw,et al.  Rate and thermal sensitivities of unstable transformation behavior in a shape memory alloy , 2004 .

[13]  Marcelo A. Savi,et al.  Phenomenological Modeling and Numerical Simulation of Shape Memory Alloys: A Thermo-Plastic-Phase Transformation Coupled Model , 2002 .

[14]  T. Shield,et al.  Microstructure in the cubic to monoclinic transition in titanium–nickel shape memory alloys , 1999 .

[15]  R O Ritchie,et al.  Fatigue-crack propagation in Nitinol, a shape-memory and superelastic endovascular stent material. , 1999, Journal of biomedical materials research.

[16]  David L. McDowell,et al.  The role of intergranular constraint on the stress-induced martensitic transformation in textured polycrystalline NiTi , 2000 .

[17]  V. Novák,et al.  Martensitic transformations in [001] CuAlZnMn single crystals , 1998 .

[18]  Ken Gall,et al.  Cyclic deformation mechanisms in precipitated NiTi shape memory alloys , 2002 .

[19]  D. McDowell,et al.  Cyclic thermomechanical behavior of a polycrystalline pseudoelastic shape memory alloy , 2002 .

[20]  J. H. Chen,et al.  Investigation on the fracture behavior of shape memory alloy NiTi , 2005 .

[21]  A. Chiba,et al.  New deformation twinning mode of B19′ martensite in Ti-Ni shape memory alloy , 1998 .

[22]  R. Asaro,et al.  Overview no. 42 Texture development and strain hardening in rate dependent polycrystals , 1985 .

[23]  Zhufeng Yue,et al.  Three-dimensional thermomechanical modeling of pseudoelasticity in shape memory alloys with different elastic properties between austenite and martensite , 2006 .

[24]  S. Kalidindi Incorporation of deformation twinning in crystal plasticity models , 1998 .

[25]  Marcelo A. Savi,et al.  A constitutive model for shape memory alloys considering tensile¿compressive asymmetry and plasticity , 2005 .

[26]  Shuichi Miyazaki,et al.  Crystallography of martensitic transformation in TiNi single crystals , 1987 .

[27]  Surya R. Kalidindi,et al.  Modeling anisotropic strain hardening and deformation textures in low stacking fault energy fcc metals , 2001 .

[28]  K. T. Ramesh,et al.  Rate dependence of deformation mechanisms in a shape memory alloy , 2002 .

[29]  Shuichi Miyazaki,et al.  Cyclic stress-strain characteristics of TiNi and TiNiCu shape memory alloys , 1995 .

[30]  Etienne Patoor,et al.  Micromechanical Modelling of Superelasticity in Shape Memory Alloys , 1996 .

[31]  J. Mackenzie,et al.  The crystallography of martensite transformations II , 1954 .

[32]  George J. Weng,et al.  A self-consistent model for the stress-strain behavior of shape-memory alloy polycrystals , 1998 .

[33]  J. Van Humbeeck,et al.  EFFECT OF TEXTURE ORIENTATION ON THE MARTENSITE DEFORMATION OF NiTi SHAPE MEMORY ALLOY SHEET , 1999 .

[34]  S. Turenne,et al.  On the lattice parameters of phases in binary Ti-Ni shape memory alloys , 2004 .

[35]  Dimitris C. Lagoudas,et al.  Thermomechanical modeling of polycrystalline SMAs under cyclic loading, Part I: theoretical derivations , 1999 .

[36]  Surya R. Kalidindi,et al.  Prediction of crystallographic texture evolution and anisotropic stress–strain curves during large plastic strains in high purity α-titanium using a Taylor-type crystal plasticity model , 2007 .

[37]  G. Bourbon,et al.  The two way shape memory effect of shape memory alloys: an experimental study and a phenomenological model , 2000 .

[38]  Etienne Patoor,et al.  Constitutive equations for polycrystalline thermoelastic shape memory alloys.: Part I. Intragranular interactions and behavior of the grain , 1999 .

[39]  O. Bruhns,et al.  A thermodynamic finite-strain model for pseudoelastic shape memory alloys , 2006 .

[40]  S. Kalidindi Modeling the strain hardening response of low SFE FCC alloys , 1998 .

[41]  Petr Šittner,et al.  Anisotropy of martensitic transformations in modeling of shape memory alloy polycrystals , 2000 .

[42]  Ken Gall,et al.  Cyclic deformation behavior of single crystal NiTi , 2001 .

[43]  M. Sade,et al.  The two way shape memory effect in CuZnAl single crystals: role of dislocations and stabilization , 1995 .

[44]  M. Sade,et al.  Thermal and pseudoelastic cycling in Cu–14.1Al–4.2Ni (wt%) single crystals , 2005 .

[45]  D. Lagoudas,et al.  A thermodynamical constitutive model for shape memory materials. Part I. The monolithic shape memory alloy , 1996 .

[46]  R. O. Ritchie,et al.  Fatigue-crack growth behavior in the superelastic and shape-memory alloy nitinol , 2001 .

[47]  R. Hehemann,et al.  Relations between the premartensitic instability and the martensite structure in TiNi , 1971 .

[48]  K. Shimizu,et al.  Crystal structure and internal defects of equiatomic TiNi martensite , 1971 .

[49]  H. Maier,et al.  Shape memory and pseudoelastic behavior of 51.5%Ni-Ti single crystals in solutionized and overaged state , 2001 .

[50]  J. Shaw A thermomechanical model for a 1-D shape memory alloy wire with propagating instabilities , 2002 .

[51]  Yinong Liu,et al.  Comparative study of deformation-induced martensite stabilisation via martensite reorientation and stress-induced martensitic transformation in NiTi , 2004 .

[52]  K. Otsuka,et al.  In situ observations of martensitic transformations in Ti50Ni34Cu16 alloy by synchrotron radiation , 2006 .

[53]  Alessandro Reali,et al.  A three-dimensional model describing stress-induced solid phase transformation with permanent inelasticity , 2007 .

[54]  Ferdinando Auricchio,et al.  Shape-memory alloys: modelling and numerical simulations of the finite-strain superelastic behavior , 1997 .

[55]  Shuichi Miyazaki,et al.  Transformation pseudoelasticity and deformation behavior in a Ti-50.6at%Ni alloy , 1981 .

[56]  Dimitris C. Lagoudas,et al.  Modeling of transformation-induced plasticity and its effect on the behavior of porous shape memory alloys. Part I: constitutive model for fully dense SMAs , 2004 .

[57]  T Prakash G. Thamburaja,et al.  Polycrystalline shape-memory materials: effect of crystallographic texture , 2001 .

[58]  X. Ren,et al.  Physical metallurgy of Ti–Ni-based shape memory alloys , 2005 .

[59]  Ken Gall,et al.  The role of texture in tension–compression asymmetry in polycrystalline NiTi , 1999 .

[60]  I. Karaman,et al.  Deformation twinning in difficult-to-work alloys during severe plastic deformation , 2005 .

[61]  Yinong Liu,et al.  Apparent modulus of elasticity of near-equiatomic NiTi , 1998 .

[62]  Sanjay Govindjee,et al.  A computational model for shape memory alloys , 2000 .

[63]  Rolf Lammering,et al.  Stress-induced transformation behavior of a polycrystalline NiTi shape memory alloy: micro and macromechanical investigations via in situ optical microscopy , 2004 .

[64]  Ferdinando Auricchio,et al.  Shape-memory alloys: macromodelling and numerical simulations of the superelastic behavior , 1997 .

[65]  H. Tobushi,et al.  Phenomenological analysis on subloops and cyclic behavior in shape memory alloys under mechanical and/or thermal loads , 1995 .

[66]  T Prakash G. Thamburaja,et al.  Multi-axial behavior of shape-memory alloys undergoing martensitic reorientation and detwinning , 2007 .

[67]  T. Ikeda,et al.  Micromechanical modeling of polycrystalline shape-memory alloys including thermo-mechanical coupling , 2003 .

[68]  Y. Mai,et al.  Theoretical modelling of the effect of plasticity on reverse transformation in superelastic shape memory alloys , 2003 .

[69]  T Prakash G. Thamburaja,et al.  Martensitic reorientation and shape-memory effect in initially textured polycrystalline Ti–Ni sheet , 2005 .

[70]  R. Sinclair,et al.  The structure of TiNi martensite , 1981 .

[71]  Franz Dieter Fischer,et al.  Micromechanical modelling of TiAl intermetallics , 1996 .

[72]  M. Achenbach A model for an alloy with shape memory , 1989 .