A Superconvergent HDG Method for Stokes Flow with Strongly Enforced Symmetry of the Stress Tensor

This work proposes a superconvergent hybridizable discontinuous Galerkin (HDG) method for the approximation of the Cauchy formulation of the Stokes equation using same degree of polynomials for the primal and mixed variables. The novel formulation relies on the well-known Voigt notation to strongly enforce the symmetry of the stress tensor. The proposed strategy introduces several advantages with respect to the existing HDG formulations. First, it remedies the suboptimal behavior experienced by the classical HDG method for formulations involving the symmetric part of the gradient of the primal variable. The optimal convergence of the mixed variable is retrieved and an element-by-element postprocess procedure leads to a superconvergent velocity field, even for low-order approximations. Second, no additional enrichment of the discrete spaces is required and a gain in computational efficiency follows from reducing the quantity of stored information and the size of the local problems. Eventually, the novel formulation naturally imposes physical tractions on the Neumann boundary. Numerical validation of the optimality of the method and its superconvergent properties is performed in 2D and 3D using meshes of different element types.

[1]  Bernardo Cockburn,et al.  journal homepage: www.elsevier.com/locate/cma , 2022 .

[2]  Bernardo Cockburn,et al.  An implicit high-order hybridizable discontinuous Galerkin method for the incompressible Navier-Stokes equations , 2011, J. Comput. Phys..

[3]  M. Fortin,et al.  Reduced symmetry elements in linear elasticity , 2008 .

[4]  A. Ern,et al.  Mathematical Aspects of Discontinuous Galerkin Methods , 2011 .

[5]  A. Huerta,et al.  Finite Element Methods for Flow Problems , 2003 .

[6]  Antonio Huerta,et al.  HDG-NEFEM with Degree Adaptivity for Stokes Flows , 2018, Journal of Scientific Computing.

[7]  A. Ern,et al.  A Hybrid High-Order method for the incompressible Navier-Stokes equations based on Temam's device , 2018, J. Comput. Phys..

[8]  Bernardo Cockburn,et al.  An implicit high-order hybridizable discontinuous Galerkin method for nonlinear convection-diffusion equations , 2009, J. Comput. Phys..

[9]  Bernardo Cockburn,et al.  Superconvergence by M-decompositions. Part II: Construction of two-dimensional finite elements , 2017 .

[10]  Peter Hansbo,et al.  Piecewise divergence‐free discontinuous Galerkin methods for Stokes flow , 2006 .

[11]  Jean E. Roberts,et al.  Mixed and hybrid finite element methods , 1987 .

[12]  Bernardo Cockburn,et al.  An implicit high-order hybridizable discontinuous Galerkin method for linear convection-diffusion equations , 2009, Journal of Computational Physics.

[13]  T. Belytschko,et al.  A First Course in Finite Elements: Belytschko/A First Course in Finite Elements , 2007 .

[14]  Bernardo Cockburn Discontinuous Galerkin methods , 2003 .

[15]  Bernardo Cockburn,et al.  Devising HDG methods for Stokes flow: An overview , 2014 .

[16]  D. Arnold,et al.  Finite element exterior calculus, homological techniques, and applications , 2006, Acta Numerica.

[17]  G. Batchelor,et al.  An Introduction to Fluid Dynamics , 1968 .

[18]  Antonio Huerta,et al.  Discontinuous Galerkin methods for the Navier–Stokes equations using solenoidal approximations , 2009 .

[19]  J. Guermond,et al.  Theory and practice of finite elements , 2004 .

[20]  Weifeng Qiu,et al.  Analysis of a hybridizable discontinuous Galerkin method for the steady-state incompressible Navier-Stokes equations , 2016, Math. Comput..

[21]  Bernardo Cockburn,et al.  The Derivation of Hybridizable Discontinuous Galerkin Methods for Stokes Flow , 2009, SIAM J. Numer. Anal..

[22]  Bernardo Cockburn,et al.  A Comparison of HDG Methods for Stokes Flow , 2010, J. Sci. Comput..

[23]  Weifeng Qiu,et al.  A note on the devising of superconvergent HDG methods for Stokes flow by M-decompositions , 2016 .

[24]  Antonio Huerta,et al.  Discontinuous Galerkin methods for the Stokes equations using divergence‐free approximations , 2008 .

[25]  Ke Shi,et al.  Conditions for superconvergence of HDG methods for Stokes flow , 2013, Math. Comput..

[26]  Brigitte Maier,et al.  Mixed And Hybrid Finite Element Methods Springer Series In Computational Mathematics , 2016 .

[27]  K. Morgan,et al.  The generation of arbitrary order curved meshes for 3D finite element analysis , 2013 .

[28]  Yulong Xing,et al.  Recent developments in discontinuous Galerkin finite element methods for partial differential equations : 2012 John H Barrett memorial lectures , 2014 .

[29]  Bo Dong,et al.  A superconvergent LDG-hybridizable Galerkin method for second-order elliptic problems , 2008, Math. Comput..

[30]  Francisco-Javier Sayas,et al.  Analysis of HDG methods for Stokes flow , 2010, Math. Comput..

[31]  Jürgen Fuhrmann,et al.  Guermond : " Theory and Practice of Finite Elements " , 2017 .

[32]  Oubay Hassan,et al.  An analysis of the performance of a high-order stabilised finite element method for simulating compressible flows , 2013 .

[33]  Bernardo Cockburn,et al.  Superconvergence by M-decompositions. Part III: Construction of three-dimensional finite elements∗ , 2017 .

[34]  Claes Johnson Finite element methods for flow problems , 1992 .

[35]  Bernardo Cockburn,et al.  Hybridized globally divergence-free LDG methods. Part I: The Stokes problem , 2005, Math. Comput..

[36]  Christoph Lehrenfeld,et al.  High order exactly divergence-free Hybrid Discontinuous Galerkin Methods for unsteady incompressible flows , 2015, ArXiv.

[37]  Bernardo Cockburn,et al.  Incompressible Finite Elements via Hybridization. Part I: The Stokes System in Two Space Dimensions , 2005, SIAM J. Numer. Anal..

[38]  Qilong Zhai,et al.  A hybridized weak Galerkin finite element scheme for the Stokes equations , 2015, Science China Mathematics.

[39]  Francisco-Javier Sayas,et al.  A projection-based error analysis of HDG methods , 2010, Math. Comput..

[40]  Per-Olof Persson,et al.  The Compact Discontinuous Galerkin (CDG) Method for Elliptic Problems , 2007, SIAM J. Sci. Comput..

[41]  Bernardo Cockburn,et al.  Incompressible Finite Elements via Hybridization. Part II: The Stokes System in Three Space Dimensions , 2005, SIAM J. Numer. Anal..

[42]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[43]  Weifeng Qiu,et al.  A superconvergent HDG method for the Incompressible Navier-Stokes Equations on general polyhedral meshes , 2015, 1506.07543.

[44]  P. Houston,et al.  hp-Version Discontinuous Galerkin Methods on Polygonal and Polyhedral Meshes , 2017 .

[45]  Bernardo Cockburn,et al.  An analysis of HDG methods for the vorticity-velocity-pressure formulation of the Stokes problem in three dimensions , 2012, Math. Comput..

[46]  Antonio Huerta,et al.  Hybridizable Discontinuous Galerkin with degree adaptivity for the incompressible Navier-Stokes equations ✩ , 2014 .

[47]  Issei Oikawa,et al.  Analysis of a Reduced-Order HDG Method for the Stokes Equations , 2015, J. Sci. Comput..

[48]  Antonio Huerta,et al.  A superconvergent hybridisable discontinuous Galerkin method for linear elasticity , 2018, International Journal for Numerical Methods in Engineering.

[49]  Raytcho D. Lazarov,et al.  Unified Hybridization of Discontinuous Galerkin, Mixed, and Continuous Galerkin Methods for Second Order Elliptic Problems , 2009, SIAM J. Numer. Anal..

[50]  Antonio Huerta,et al.  Tutorial on Hybridizable Discontinuous Galerkin (HDG) for second-order elliptic problems , 2016 .

[51]  A. J. Gil,et al.  A unified approach for a posteriori high-order curved mesh generation using solid mechanics , 2016 .

[52]  Haiying Wang,et al.  Superconvergent discontinuous Galerkin methods for second-order elliptic problems , 2009, Math. Comput..

[53]  C. Ross Ethier,et al.  Exact fully 3D Navier–Stokes solutions for benchmarking , 1994 .

[54]  Francisco-Javier Sayas,et al.  Superconvergence by $M$-decompositions. Part I: General theory for HDG methods for diffusion , 2016, Mathematics of Computation.

[55]  J. Hesthaven,et al.  Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications , 2007 .

[56]  Rolf Stenberg Some new families of finite elements for the stokes equations , 1989 .

[57]  T. Belytschko,et al.  A first course in finite elements , 2007 .