Understanding WaveShrink: Variance and bias estimation
暂无分享,去创建一个
[1] J. Dennis,et al. Two new unconstrained optimization algorithms which use function and gradient values , 1979 .
[2] P. Bickel. Minimax Estimation of the Mean of a Normal Distribution when the Parameter Space is Restricted , 1981 .
[3] Stéphane Mallat,et al. A Theory for Multiresolution Signal Decomposition: The Wavelet Representation , 1989, IEEE Trans. Pattern Anal. Mach. Intell..
[4] Ingrid Daubechies,et al. Ten Lectures on Wavelets , 1992 .
[5] I. Daubechies,et al. Wavelets on the Interval and Fast Wavelet Transforms , 1993 .
[6] I. Johnstone,et al. Ideal spatial adaptation by wavelet shrinkage , 1994 .
[7] D. L. Donoho,et al. Ideal spacial adaptation via wavelet shrinkage , 1994 .
[8] D. Brillinger. Some river wavelets , 1994 .
[9] David R. Brillinger,et al. Uses of cumulants in wavelet analysis , 1994, Optics & Photonics.
[10] Andrew G. Bruce,et al. WaveShrink: shrinkage functions and thresholds , 1995, Optics + Photonics.
[11] I. Johnstone,et al. Wavelet Shrinkage: Asymptopia? , 1995 .
[12] I. Johnstone,et al. Adapting to Unknown Smoothness via Wavelet Shrinkage , 1995 .
[13] L. Breiman. Better subset regression using the nonnegative garrote , 1995 .
[14] David R. Brillinger,et al. Some uses if cumulants in wavelet analysis , 1996 .