Dynamic Model Adaptation for Multiscale Simulation of Hyperbolic Systems with Relaxation

In numerous industrial CFD applications, it is usual to use two (or more) different codes to solve a physical phenomenon: where the flow is a priori assumed to have a simple behavior, a code based on a coarse model is applied, while a code based on a fine model is used elsewhere. This leads to a complex coupling problem with fixed interfaces. The aim of the present work is to provide a numerical indicator to optimize to position of these coupling interfaces. In other words, thanks to this numerical indicator, one could verify if the use of the coarser model and of the resulting coupling does not introduce spurious effects. In order to validate this indicator, we use it in a dynamical multiscale method with moving coupling interfaces. The principle of this method is to use as much as possible a coarse model instead of the fine model in the computational domain, in order to obtain an accuracy which is comparable with the one provided by the fine model. We focus here on general hyperbolic systems with stiff relaxation source terms together with the corresponding hyperbolic equilibrium systems. Using a numerical Chapman–Enskog expansion and the distance to the equilibrium manifold, we construct the numerical indicator. Based on several works on the coupling of different hyperbolic models, an original numerical method of dynamic model adaptation is proposed. We prove that this multiscale method preserves invariant domains and that the entropy of the numerical solution decreases with respect to time. The reliability of the adaptation procedure is assessed on various 1D and 2D test cases coming from two-phase flow modeling.

[1]  Luc Mieussens,et al.  A New Asymptotic Preserving Scheme Based on Micro-Macro Formulation for Linear Kinetic Equations in the Diffusion Limit , 2008, SIAM J. Sci. Comput..

[2]  Annalisa Ambroso,et al.  COUPLING OF MULTIPHASE FLOW MODELS , 2005 .

[3]  Wen-An Yong,et al.  Entropy and Global Existence for Hyperbolic Balance Laws , 2004 .

[4]  Philippe Helluy,et al.  Pressure laws and fast Legendre transform , 2011 .

[5]  Stéphane Jaouen,et al.  Etude mathematique et numerique de stabilite pour des modeles hydrodynamiques avec transition de phase , 2001 .

[6]  R. Abgrall,et al.  A Multiphase Godunov Method for Compressible Multifluid and Multiphase Flows , 1999 .

[7]  C. D. Levermore,et al.  Hyperbolic conservation laws with stiff relaxation terms and entropy , 1994 .

[8]  Alexandre Ern,et al.  A Posteriori Control of Modeling Errors and Discretization Errors , 2003, Multiscale Model. Simul..

[9]  Frédéric Coquel,et al.  Well-Posedness and Singular Limit of a Semilinear Hyperbolic Relaxation System with a Two-Scale Discontinuous Relaxation Rate , 2014, Archive for Rational Mechanics and Analysis.

[10]  Frédéric Hecht,et al.  AUTOMATIC INSERTION OF A TURBULENCE MODEL IN THE FINITE ELEMENT DISCRETIZATION OF THE NAVIER–STOKES EQUATIONS , 2009 .

[11]  Wen-An Yong,et al.  Singular Perturbations of First-Order Hyperbolic Systems with Stiff Source Terms , 1999 .

[12]  Christian Rohde,et al.  The computation of nonclassical shock waves with a heterogeneous multiscale method , 2010, Networks Heterog. Media.

[13]  S. Perotto Adaptive modeling for free-surface flows , 2006 .

[14]  Axel Klar An Asymptotic Preserving Numerical Scheme for Kinetic Equations in the Low Mach Number Limit , 1999 .

[15]  P. Raviart,et al.  Numerical Approximation of Hyperbolic Systems of Conservation Laws , 1996, Applied Mathematical Sciences.

[16]  Frédéric Coquel,et al.  Homogeneous models with phase transition: coupling by finite volume methods , 2005 .

[17]  Laurent Gosse Time-Splitting Schemes and Measure Source Terms for a Quasilinear Relaxing System , 2003 .

[18]  Laurent Gosse,et al.  Space Localization and Well-Balanced Schemes for Discrete Kinetic Models in Diffusive Regimes , 2003, SIAM J. Numer. Anal..

[19]  Nicolas Seguin,et al.  Model Adaptation for Hyperbolic Systems with Relaxation , 2011 .

[20]  Guillaume Bal,et al.  Mathematical Modelling and Numerical Analysis Coupling of Transport and Diffusion Models in Linear Transport Theory , 2022 .

[21]  Mohammed Lemou,et al.  Micro-Macro Schemes for Kinetic Equations Including Boundary Layers , 2012, SIAM J. Sci. Comput..

[22]  Luc Mieussens,et al.  A moving interface method for dynamic kinetic-fluid coupling , 2007, J. Comput. Phys..

[23]  Luc Mieussens,et al.  Macroscopic Fluid Models with Localized Kinetic Upscaling Effects , 2006, Multiscale Model. Simul..

[24]  M. Baer,et al.  A two-phase mixture theory for the deflagration-to-detonation transition (ddt) in reactive granular materials , 1986 .

[25]  François Bouchut,et al.  A REDUCED STABILITY CONDITION FOR NONLINEAR RELAXATION TO CONSERVATION LAWS , 2004 .

[26]  Laurent Gosse,et al.  Computing Qualitatively Correct Approximations of Balance Laws , 2013 .

[27]  Edwige Godlewski,et al.  The numerical interface coupling of nonlinear hyperbolic systems of conservation laws: II. The case of systems , 2005 .

[28]  Edwige Godlewski,et al.  The numerical interface coupling of nonlinear hyperbolic systems of conservation laws: I. The scalar case , 2004, Numerische Mathematik.

[29]  Stéphane Dellacherie,et al.  Relaxation schemes for the multicomponent Euler system , 2003 .

[30]  Li Wang,et al.  A domain decomposition method for semilinear hyperbolic systems with two-scale relaxations , 2012, Math. Comput..

[31]  D. Serre Multidimensional Shock Interaction for a Chaplygin Gas , 2009 .

[32]  D. Drew,et al.  Theory of Multicomponent Fluids , 1998 .

[33]  N. Crouseilles,et al.  Kinetic/fluid micro-macro numerical schemes for Vlasov-Poisson-BGK equation using particles , 2012 .

[34]  Alfio Quarteroni,et al.  MULTIMODELS FOR INCOMPRESSIBLE FLOWS: ITERATIVE SOLUTIONS FOR THE NAVIER-STOKES/OSEEN COUPLING , 2001 .

[35]  P. Raviart,et al.  A Godunov-type method for the seven-equation model of compressible two-phase flow , 2012 .

[36]  Ventura Caetano,et al.  Sur certains problèmes de linéarisation et de couplage pour les systèmes hyperboliques non-linéaires , 2006 .

[37]  P. Raviart,et al.  The interface coupling of the gas dynamics equations , 2008 .

[38]  Benjamin Boutin,et al.  ÉTUDE MATHÉMATIQUE ET NUMÉRIQUE D'ÉQUATIONS HYPERBOLIQUES NON-LINÉAIRES : COUPLAGE DE MODÈLES & CHOCS NON CLASSIQUES , 2009 .

[39]  Frédéric Coquel,et al.  The coupling of homogeneous models for two-phase flows , 2007 .

[40]  Frédéric Coquel,et al.  Coupling of general Lagrangian systems , 2007, Math. Comput..

[41]  Philippe Helluy,et al.  Relaxation models of phase transition flows , 2006 .

[42]  Khaled Saleh,et al.  Analyse et Simulation Numérique par Relaxation d'Ecoulements Diphasiques Compressibles. Contribution au Traitement des Phases Evanescentes. , 2012 .

[43]  François Golse,et al.  A Domain Decomposition Analysis for a Two-Scale Linear Transport Problem , 2003 .

[44]  Ondrej Kreml,et al.  Global Ill‐Posedness of the Isentropic System of Gas Dynamics , 2013, 1304.0123.

[45]  N. Seguin,et al.  Numerical Coupling of Two-Phase Flows , 2006 .

[46]  Frédéric Coquel,et al.  RELAXATION OF FLUID SYSTEMS , 2012 .

[47]  Roberto Natalini,et al.  GLOBAL EXISTENCE OF SMOOTH SOLUTIONS FOR PARTIALLYDISSIPATIVE HYPERBOLIC SYSTEMS WITH A CONVEX ENTROPYB , 2002 .

[48]  M. Ishii Thermo-fluid dynamic theory of two-phase flow , 1975 .

[49]  Shi Jin,et al.  A class of asymptotic-preserving schemes for kinetic equations and related problems with stiff sources , 2009, J. Comput. Phys..

[50]  E Weinan,et al.  The heterogeneous multiscale method* , 2012, Acta Numerica.

[51]  Tai-Ping Liu Hyperbolic conservation laws with relaxation , 1987 .

[52]  Athanasios E. Tzavaras,et al.  RELATIVE ENTROPY IN HYPERBOLIC RELAXATION , 2005 .

[53]  Thomas Galié,et al.  Couplage interfacial de modèles en dynamique des fluides. Application aux écoulements diphasiques. , 2009 .

[54]  Clément Cancès,et al.  Error analysis of a dynamic model adaptation procedure for nonlinear hyperbolic equations , 2016 .

[55]  Grégoire Allaire,et al.  A strictly hyperbolic equilibrium phase transition model , 2007 .

[56]  Giacomo Dimarco,et al.  Exponential Runge-Kutta Methods for Stiff Kinetic Equations , 2010, SIAM J. Numer. Anal..

[57]  I. Suliciu,et al.  On the thermodynamics of rate-type fluids and phase transitions. II. Phase transitions , 1998 .

[58]  P. Lax,et al.  On Upstream Differencing and Godunov-Type Schemes for Hyperbolic Conservation Laws , 1983 .

[59]  Shi Jin,et al.  Efficient Asymptotic-Preserving (AP) Schemes For Some Multiscale Kinetic Equations , 1999, SIAM J. Sci. Comput..

[60]  Shi Jin ASYMPTOTIC PRESERVING (AP) SCHEMES FOR MULTISCALE KINETIC AND HYPERBOLIC EQUATIONS: A REVIEW , 2010 .

[61]  I. Suliciu,et al.  On the thermodynamics of rate-type fluids and phase transitions. I. Rate-type fluids , 1998 .

[62]  Luc Mieussens,et al.  A multiscale kinetic-fluid solver with dynamic localization of kinetic effects , 2009, J. Comput. Phys..

[63]  T. Gallouët,et al.  Numerical modeling of two-phase flows using the two-fluid two-pressure approach , 2004 .