Dynamic Model Adaptation for Multiscale Simulation of Hyperbolic Systems with Relaxation
暂无分享,去创建一个
Clément Cancès | Nicolas Seguin | Edwige Godlewski | Hélène Mathis | E. Godlewski | N. Seguin | C. Cancès | H. Mathis
[1] Luc Mieussens,et al. A New Asymptotic Preserving Scheme Based on Micro-Macro Formulation for Linear Kinetic Equations in the Diffusion Limit , 2008, SIAM J. Sci. Comput..
[2] Annalisa Ambroso,et al. COUPLING OF MULTIPHASE FLOW MODELS , 2005 .
[3] Wen-An Yong,et al. Entropy and Global Existence for Hyperbolic Balance Laws , 2004 .
[4] Philippe Helluy,et al. Pressure laws and fast Legendre transform , 2011 .
[5] Stéphane Jaouen,et al. Etude mathematique et numerique de stabilite pour des modeles hydrodynamiques avec transition de phase , 2001 .
[6] R. Abgrall,et al. A Multiphase Godunov Method for Compressible Multifluid and Multiphase Flows , 1999 .
[7] C. D. Levermore,et al. Hyperbolic conservation laws with stiff relaxation terms and entropy , 1994 .
[8] Alexandre Ern,et al. A Posteriori Control of Modeling Errors and Discretization Errors , 2003, Multiscale Model. Simul..
[9] Frédéric Coquel,et al. Well-Posedness and Singular Limit of a Semilinear Hyperbolic Relaxation System with a Two-Scale Discontinuous Relaxation Rate , 2014, Archive for Rational Mechanics and Analysis.
[10] Frédéric Hecht,et al. AUTOMATIC INSERTION OF A TURBULENCE MODEL IN THE FINITE ELEMENT DISCRETIZATION OF THE NAVIER–STOKES EQUATIONS , 2009 .
[11] Wen-An Yong,et al. Singular Perturbations of First-Order Hyperbolic Systems with Stiff Source Terms , 1999 .
[12] Christian Rohde,et al. The computation of nonclassical shock waves with a heterogeneous multiscale method , 2010, Networks Heterog. Media.
[13] S. Perotto. Adaptive modeling for free-surface flows , 2006 .
[14] Axel Klar. An Asymptotic Preserving Numerical Scheme for Kinetic Equations in the Low Mach Number Limit , 1999 .
[15] P. Raviart,et al. Numerical Approximation of Hyperbolic Systems of Conservation Laws , 1996, Applied Mathematical Sciences.
[16] Frédéric Coquel,et al. Homogeneous models with phase transition: coupling by finite volume methods , 2005 .
[17] Laurent Gosse. Time-Splitting Schemes and Measure Source Terms for a Quasilinear Relaxing System , 2003 .
[18] Laurent Gosse,et al. Space Localization and Well-Balanced Schemes for Discrete Kinetic Models in Diffusive Regimes , 2003, SIAM J. Numer. Anal..
[19] Nicolas Seguin,et al. Model Adaptation for Hyperbolic Systems with Relaxation , 2011 .
[20] Guillaume Bal,et al. Mathematical Modelling and Numerical Analysis Coupling of Transport and Diffusion Models in Linear Transport Theory , 2022 .
[21] Mohammed Lemou,et al. Micro-Macro Schemes for Kinetic Equations Including Boundary Layers , 2012, SIAM J. Sci. Comput..
[22] Luc Mieussens,et al. A moving interface method for dynamic kinetic-fluid coupling , 2007, J. Comput. Phys..
[23] Luc Mieussens,et al. Macroscopic Fluid Models with Localized Kinetic Upscaling Effects , 2006, Multiscale Model. Simul..
[24] M. Baer,et al. A two-phase mixture theory for the deflagration-to-detonation transition (ddt) in reactive granular materials , 1986 .
[25] François Bouchut,et al. A REDUCED STABILITY CONDITION FOR NONLINEAR RELAXATION TO CONSERVATION LAWS , 2004 .
[26] Laurent Gosse,et al. Computing Qualitatively Correct Approximations of Balance Laws , 2013 .
[27] Edwige Godlewski,et al. The numerical interface coupling of nonlinear hyperbolic systems of conservation laws: II. The case of systems , 2005 .
[28] Edwige Godlewski,et al. The numerical interface coupling of nonlinear hyperbolic systems of conservation laws: I. The scalar case , 2004, Numerische Mathematik.
[29] Stéphane Dellacherie,et al. Relaxation schemes for the multicomponent Euler system , 2003 .
[30] Li Wang,et al. A domain decomposition method for semilinear hyperbolic systems with two-scale relaxations , 2012, Math. Comput..
[31] D. Serre. Multidimensional Shock Interaction for a Chaplygin Gas , 2009 .
[32] D. Drew,et al. Theory of Multicomponent Fluids , 1998 .
[33] N. Crouseilles,et al. Kinetic/fluid micro-macro numerical schemes for Vlasov-Poisson-BGK equation using particles , 2012 .
[34] Alfio Quarteroni,et al. MULTIMODELS FOR INCOMPRESSIBLE FLOWS: ITERATIVE SOLUTIONS FOR THE NAVIER-STOKES/OSEEN COUPLING , 2001 .
[35] P. Raviart,et al. A Godunov-type method for the seven-equation model of compressible two-phase flow , 2012 .
[36] Ventura Caetano,et al. Sur certains problèmes de linéarisation et de couplage pour les systèmes hyperboliques non-linéaires , 2006 .
[37] P. Raviart,et al. The interface coupling of the gas dynamics equations , 2008 .
[38] Benjamin Boutin,et al. ÉTUDE MATHÉMATIQUE ET NUMÉRIQUE D'ÉQUATIONS HYPERBOLIQUES NON-LINÉAIRES : COUPLAGE DE MODÈLES & CHOCS NON CLASSIQUES , 2009 .
[39] Frédéric Coquel,et al. The coupling of homogeneous models for two-phase flows , 2007 .
[40] Frédéric Coquel,et al. Coupling of general Lagrangian systems , 2007, Math. Comput..
[41] Philippe Helluy,et al. Relaxation models of phase transition flows , 2006 .
[42] Khaled Saleh,et al. Analyse et Simulation Numérique par Relaxation d'Ecoulements Diphasiques Compressibles. Contribution au Traitement des Phases Evanescentes. , 2012 .
[43] François Golse,et al. A Domain Decomposition Analysis for a Two-Scale Linear Transport Problem , 2003 .
[44] Ondrej Kreml,et al. Global Ill‐Posedness of the Isentropic System of Gas Dynamics , 2013, 1304.0123.
[45] N. Seguin,et al. Numerical Coupling of Two-Phase Flows , 2006 .
[46] Frédéric Coquel,et al. RELAXATION OF FLUID SYSTEMS , 2012 .
[47] Roberto Natalini,et al. GLOBAL EXISTENCE OF SMOOTH SOLUTIONS FOR PARTIALLYDISSIPATIVE HYPERBOLIC SYSTEMS WITH A CONVEX ENTROPYB , 2002 .
[48] M. Ishii. Thermo-fluid dynamic theory of two-phase flow , 1975 .
[49] Shi Jin,et al. A class of asymptotic-preserving schemes for kinetic equations and related problems with stiff sources , 2009, J. Comput. Phys..
[50] E Weinan,et al. The heterogeneous multiscale method* , 2012, Acta Numerica.
[51] Tai-Ping Liu. Hyperbolic conservation laws with relaxation , 1987 .
[52] Athanasios E. Tzavaras,et al. RELATIVE ENTROPY IN HYPERBOLIC RELAXATION , 2005 .
[53] Thomas Galié,et al. Couplage interfacial de modèles en dynamique des fluides. Application aux écoulements diphasiques. , 2009 .
[54] Clément Cancès,et al. Error analysis of a dynamic model adaptation procedure for nonlinear hyperbolic equations , 2016 .
[55] Grégoire Allaire,et al. A strictly hyperbolic equilibrium phase transition model , 2007 .
[56] Giacomo Dimarco,et al. Exponential Runge-Kutta Methods for Stiff Kinetic Equations , 2010, SIAM J. Numer. Anal..
[57] I. Suliciu,et al. On the thermodynamics of rate-type fluids and phase transitions. II. Phase transitions , 1998 .
[58] P. Lax,et al. On Upstream Differencing and Godunov-Type Schemes for Hyperbolic Conservation Laws , 1983 .
[59] Shi Jin,et al. Efficient Asymptotic-Preserving (AP) Schemes For Some Multiscale Kinetic Equations , 1999, SIAM J. Sci. Comput..
[60] Shi Jin. ASYMPTOTIC PRESERVING (AP) SCHEMES FOR MULTISCALE KINETIC AND HYPERBOLIC EQUATIONS: A REVIEW , 2010 .
[61] I. Suliciu,et al. On the thermodynamics of rate-type fluids and phase transitions. I. Rate-type fluids , 1998 .
[62] Luc Mieussens,et al. A multiscale kinetic-fluid solver with dynamic localization of kinetic effects , 2009, J. Comput. Phys..
[63] T. Gallouët,et al. Numerical modeling of two-phase flows using the two-fluid two-pressure approach , 2004 .