pSILAC mass spectrometry reveals ZFP91 as IMiD-dependent substrate of the CRL4CRBN ubiquitin ligase

[1]  Nobuhiro Nakamura,et al.  Ubiquitin System , 2018, International journal of molecular sciences.

[2]  Chin-Chun Lu,et al.  A novel cereblon modulator recruits GSPT1 to the CRL4CRBN ubiquitin ligase , 2016, Nature.

[3]  B. Kuster,et al.  Immunomodulatory drugs disrupt the cereblon–CD147–MCT1 axis to exert antitumor activity and teratogenicity , 2016, Nature Medicine.

[4]  G. Petzold,et al.  Structural basis of lenalidomide-induced CK1α degradation by the CRL4CRBN ubiquitin ligase , 2016, Nature.

[5]  W. I. Mohamed,et al.  Cullin–RING ubiquitin E3 ligase regulation by the COP9 signalosome , 2016, Nature.

[6]  Justin M. Reitsma,et al.  Glutamine Triggers Acetylation-Dependent Degradation of Glutamine Synthetase via the Thalidomide Receptor Cereblon. , 2016, Molecular cell.

[7]  B. Ebert,et al.  Lenalidomide: deciphering mechanisms of action in myeloma, myelodysplastic syndrome and beyond. , 2015, Current opinion in cell biology.

[8]  Dennis L. Buckley,et al.  Small-Molecule-Mediated Degradation of the Androgen Receptor through Hydrophobic Tagging. , 2015, Angewandte Chemie.

[9]  I. E. Smith,et al.  Catalytic in vivo protein knockdown by small-molecule PROTACs. , 2015, Nature chemical biology.

[10]  Michael B. Stadler,et al.  Analysis of intronic and exonic reads in RNA-seq data characterizes transcriptional and post-transcriptional regulation , 2015, Nature Biotechnology.

[11]  I. E. Smith,et al.  HaloPROTACS: Use of Small Molecule PROTACs to Induce Degradation of HaloTag Fusion Proteins. , 2015, ACS chemical biology.

[12]  James E. Bradner,et al.  Phthalimide conjugation as a strategy for in vivo target protein degradation , 2015, Science.

[13]  C. Crews,et al.  Hijacking the E3 Ubiquitin Ligase Cereblon to Efficiently Target BRD4. , 2015, Chemistry & biology.

[14]  S. Carr,et al.  Lenalidomide induces ubiquitination and degradation of CK1α in del(5q) MDS , 2015, Nature.

[15]  A. Lamond,et al.  Multidimensional proteomics for cell biology , 2015, Nature Reviews Molecular Cell Biology.

[16]  G. von Heijne,et al.  Tissue-based map of the human proteome , 2015, Science.

[17]  Matthew E. Ritchie,et al.  limma powers differential expression analyses for RNA-sequencing and microarray studies , 2015, Nucleic acids research.

[18]  Michael B. Stadler,et al.  QuasR: quantification and annotation of short reads in R , 2014, Bioinform..

[19]  H. Handa,et al.  Structure of the human Cereblon–DDB1–lenalidomide complex reveals basis for responsiveness to thalidomide analogs , 2014, Nature Structural &Molecular Biology.

[20]  Jeremy L. Jenkins,et al.  Structure of the DDB1-CRBN E3 ubiquitin ligase in complex with thalidomide , 2014, Nature.

[21]  Edward L. Huttlin,et al.  MultiNotch MS3 Enables Accurate, Sensitive, and Multiplexed Detection of Differential Expression across Cancer Cell Line Proteomes , 2014, Analytical chemistry.

[22]  Edward L. Huttlin,et al.  Quantitative Temporal Viromics: An Approach to Investigate Host-Pathogen Interaction , 2014, Cell.

[23]  Guang-Biao Zhou,et al.  Cancerous inhibitor of PP2A is targeted by natural compound celastrol for degradation in non-small-cell lung cancer. , 2014, Carcinogenesis.

[24]  Christopher J. Ott,et al.  The Myeloma Drug Lenalidomide Promotes the Cereblon-Dependent Destruction of Ikaros Proteins , 2014, Science.

[25]  S. Carr,et al.  Lenalidomide Causes Selective Degradation of IKZF1 and IKZF3 in Multiple Myeloma Cells , 2014, Science.

[26]  D. Toczyski,et al.  Ubiquitin ligase trapping identifies an SCF(Saf1) pathway targeting unprocessed vacuolar/lysosomal proteins. , 2014, Molecular cell.

[27]  H. Handa,et al.  Immunomodulatory agents lenalidomide and pomalidomide co-stimulate T cells by inducing degradation of T cell repressors Ikaros and Aiolos via modulation of the E3 ubiquitin ligase complex CRL4CRBN , 2013, British journal of haematology.

[28]  Céline Hernandez,et al.  A Novel Pulse-Chase SILAC Strategy Measures Changes in Protein Decay and Synthesis Rates Induced by Perturbation of Proteostasis with an Hsp90 Inhibitor , 2013, PloS one.

[29]  J. Harper,et al.  Parallel SCF adaptor capture proteomics reveals a role for SCFFBXL17 in NRF2 activation via BACH1 repressor turnover. , 2013, Molecular cell.

[30]  John R. Yates,et al.  Identification of Long-Lived Proteins Reveals Exceptional Stability of Essential Cellular Structures , 2013, Cell.

[31]  Derek J. Bailey,et al.  Neutron-encoded mass signatures for multi-plexed proteome quantification , 2013, Nature Methods.

[32]  J. Harper,et al.  Understanding Cullin-RING E3 Biology through Proteomics-based Substrate Identification* , 2012, Molecular & Cellular Proteomics.

[33]  M. Rapé,et al.  The Ubiquitin Code , 2012, Annual review of biochemistry.

[34]  Steven P Gygi,et al.  Hyperplexing: A Method for Higher-Order Multiplexed Quantitative Proteomics Provides a Map of the Dynamic Response to Rapamycin in Yeast , 2012, Science Signaling.

[35]  Davis J. McCarthy,et al.  Differential expression analysis of multifactor RNA-Seq experiments with respect to biological variation , 2012, Nucleic acids research.

[36]  Michelle S. Scott,et al.  A Quantitative Spatial Proteomics Analysis of Proteome Turnover in Human Cells* , 2011, Molecular & Cellular Proteomics.

[37]  M. Selbach,et al.  Global quantification of mammalian gene expression control , 2011, Nature.

[38]  Xuejun Jin,et al.  Zinc-finger protein 91 plays a key role in LIGHT-induced activation of non-canonical NF-κB pathway. , 2010, Biochemical and biophysical research communications.

[39]  Xuejun Jin,et al.  An Atypical E3 Ligase Zinc Finger Protein 91 Stabilizes and Activates NF-κB-inducing Kinase via Lys63-linked Ubiquitination* , 2010, The Journal of Biological Chemistry.

[40]  Ruedi Aebersold,et al.  Options and considerations when selecting a quantitative proteomics strategy , 2010, Nature Biotechnology.

[41]  Toshihiko Ogura,et al.  Identification of a Primary Target of Thalidomide Teratogenicity , 2010, Science.

[42]  R. Deshaies,et al.  RING domain E3 ubiquitin ligases. , 2009, Annual review of biochemistry.

[43]  D. Moras,et al.  A set of baculovirus transfer vectors for screening of affinity tags and parallel expression strategies. , 2009, Analytical biochemistry.

[44]  M. Mann,et al.  MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification , 2008, Nature Biotechnology.

[45]  Magda Melchert,et al.  The thalidomide saga. , 2007, The international journal of biochemistry & cell biology.

[46]  J. Harper,et al.  Ubiquitin proteasome system (UPS): what can chromatin do for you? , 2007, Current opinion in cell biology.

[47]  Angus G. Dalgleish,et al.  The evolution of thalidomide and its IMiD derivatives as anticancer agents , 2004, Nature Reviews Cancer.

[48]  Andrew H. Thompson,et al.  Tandem mass tags: a novel quantification strategy for comparative analysis of complex protein mixtures by MS/MS. , 2003, Analytical chemistry.

[49]  Terence P. Speed,et al.  A comparison of normalization methods for high density oligonucleotide array data based on variance and bias , 2003, Bioinform..

[50]  M. Mann,et al.  Stable Isotope Labeling by Amino Acids in Cell Culture, SILAC, as a Simple and Accurate Approach to Expression Proteomics* , 2002, Molecular & Cellular Proteomics.

[51]  B. Barlogie,et al.  Antitumor activity of thalidomide in refractory multiple myeloma. , 1999, The New England journal of medicine.