A new benchmark for TiO2 nanotube array growth by anodization

We report on the anodic formation of a self-standing 720 μm thick TiO2 nanotubular membrane by complete consumption of a 250 μm thick titanium foil sample. By employing double sided electrochemical oxidation of titanium in an electrolyte comprised of water, NH4F, and ethylene glycol, we obtain two highly ordered, hexagonal close-packed titania nanotube arrays 360 μm in length that are separated by a thin compact oxide layer; the individual nanotubes in each array have an aspect ratio of ∼2200. The potentiostatic anodization of titanium in an ethylene glycol, NH4F, and water electrolyte dramatically increases the rate of nanotube array growth to approximately 15 μm/h, representing a growth rate ∼750−6000% greater than that seen, respectively, in other polar organic or aqueous based electrolytes previously used to form TiO2 nanotube arrays. We consider the effects of electrolyte composition, applied potential, and anodization duration on the length and diameter of the resulting nanotubes in terms of a growt...

[1]  Kazuyuki Nishio,et al.  Flow‐Through‐Type DNA Array Based on Ideally Ordered Anodic Porous Alumina Substrate , 2004 .

[2]  Craig A Grimes,et al.  Water-photolysis properties of micron-length highly-ordered titania nanotube-arrays. , 2005, Journal of nanoscience and nanotechnology.

[3]  Craig A. Grimes,et al.  Crystallization and high-temperature structural stability of titanium oxide nanotube arrays , 2003 .

[4]  Toshiaki Tamamura,et al.  Photonic Crystal Using Anodic Porous Alumina , 1999 .

[5]  E. Verwey Electrolytic conduction of a solid insulator at high fields The formation of the anodic oxide film on aluminium , 1935 .

[6]  Hiroki Habazaki,et al.  Nanoporous Anodic Niobium Oxide Formed in Phosphate/Glycerol Electrolyte , 2005 .

[7]  D. Macdonald,et al.  On the Kinetics of Growth of Anodic Oxide Films , 1998 .

[8]  Craig A. Grimes,et al.  Titanium oxide nanotube arrays prepared by anodic oxidation , 2001 .

[9]  Craig A Grimes,et al.  Enhanced photocleavage of water using titania nanotube arrays. , 2005, Nano letters.

[10]  Craig A. Grimes,et al.  A Self-Cleaning, Room-Temperature Titania-Nanotube Hydrogen Gas Sensor , 2003 .

[11]  T. Mallouk,et al.  Nanowire p–n Heterojunction Diodes Made by Templated Assembly of Multilayer Carbon‐Nanotube/Polymer/Semiconductor‐Particle Shells around Metal Nanowires , 2005 .

[12]  P. Lessner,et al.  THE NON-THICKNESS-LIMITED GROWTH OF ANODIC OXIDE FILMS ON VALVE METALS , 1999 .

[13]  Chad A Mirkin,et al.  Multisegmented one-dimensional nanorods prepared by hard-template synthetic methods. , 2006, Angewandte Chemie.

[14]  R. Karlinsey Preparation of self-organized niobium oxide microstructures via potentiostatic anodization , 2005 .

[15]  Jan M. Macak,et al.  Anodic growth of self-organized anodic TiO2 nanotubes in viscous electrolytes , 2006 .

[16]  M. Musiani,et al.  Nb Electrodissolution in Acid Fluoride Medium Steady-State and Impedance Investigations , 2002 .

[17]  Craig A. Grimes,et al.  Highly-ordered TiO2 nanotube arrays up to 220 µm in length: use in water photoelectrolysis and dye-sensitized solar cells , 2007 .

[18]  C. Grimes,et al.  Cation Effect on the Electrochemical Formation of Very High Aspect Ratio TiO2 Nanotube Arrays in Formamide−Water Mixtures , 2007 .

[19]  K. G. Ong,et al.  A Transcutaneous Hydrogen Sensor: From Design to Application , 2006 .

[20]  Hans Söderlund,et al.  Antibody-Based Bio-Nanotube Membranes for Enantiomeric Drug Separations , 2002, Science.

[21]  Craig A. Grimes,et al.  Unprecedented ultra-high hydrogen gas sensitivity in undoped titania nanotubes , 2006 .

[22]  W. Smyrl,et al.  Zirconium Oxide Nanotubes Synthesized via Direct Electrochemical Anodization , 2005 .

[23]  Craig A. Grimes,et al.  Synthesis and application of highly ordered arrays of TiO2 nanotubes , 2007 .

[24]  Craig A. Grimes,et al.  The effect of electrolyte composition on the fabrication of self-organized titanium oxide nanotube arrays by anodic oxidation , 2005 .

[25]  Craig A. Grimes,et al.  Anodic Growth of Highly Ordered TiO2 Nanotube Arrays to 134 μm in Length , 2006 .

[26]  O. Kalugin,et al.  Properties of 1-1 electrolytes solutions in ethylene glycol at temperatures from 5 to 175 °C , 1998 .

[27]  Kai Zhu,et al.  Enhanced charge-collection efficiencies and light scattering in dye-sensitized solar cells using oriented TiO2 nanotubes arrays. , 2007, Nano letters.

[28]  C. Grimes,et al.  Controlled Molecular Release Using Nanoporous Alumina Capsules , 2003 .

[29]  Craig A. Grimes,et al.  Ammonia detection using nanoporous alumina resistive and surface acoustic wave sensors , 2003 .

[30]  Craig A. Grimes,et al.  Synthesis and photoelectrochemical properties of nanoporous iron (III) oxide by potentiostatic anodization , 2006 .

[31]  Kenji Fukuda,et al.  Ordered Metal Nanohole Arrays Made by a Two-Step Replication of Honeycomb Structures of Anodic Alumina , 1995, Science.

[32]  Toshiaki Tamamura,et al.  Highly ordered nanochannel-array architecture in anodic alumina , 1997 .

[33]  K. Nishio,et al.  Fabrication and Electrochemical Behavior of Nanodisk Electrode Arrays with Controlled Interval Using Ideally Ordered Porous Alumina , 2004 .

[34]  Craig A. Grimes,et al.  Backside illuminated dye-sensitized solar cells based on titania nanotube array electrodes , 2006 .

[35]  L. Young,et al.  Non-thickness-limited growth of anodic oxide films on tantalum , 2001 .

[36]  Craig A. Grimes,et al.  Fabrication of tapered, conical-shaped titania nanotubes , 2003 .

[37]  N. Cabrera,et al.  Theory of the oxidation of metals , 1949 .

[38]  K. Nishio,et al.  Dependence of Optical Properties of Ordered Metal Hole Array on Refractive Index of Surrounding Medium , 2004 .

[39]  C. Grimes,et al.  Initial Studies on the Hydrogen Gas Sensing Properties of Highly-Ordered High Aspect Ratio TiO 2 Nanotube-Arrays 20 μ m to 222 μ m in Length , 2006 .

[40]  D. Landolt,et al.  EQCM Study of Anodic Film Growth on Valve Metals , 2004 .

[41]  Kornelius Nielsch,et al.  Fast fabrication of long-range ordered porous alumina membranes by hard anodization , 2006, Nature materials.

[42]  K. Wada,et al.  Fabrication of Ideally Ordered Nanoporous Alumina Films and Integrated Alumina Nanotubule Arrays by High‐Field Anodization , 2005 .

[43]  Craig A Grimes,et al.  Use of highly-ordered TiO(2) nanotube arrays in dye-sensitized solar cells. , 2006, Nano letters.

[44]  P. Chu,et al.  In situ fabrication of alumina nanotube array and photoluminescence , 2006 .

[45]  Patrik Schmuki,et al.  Self-organized high aspect ratio porous hafnium oxide prepared by electrochemical anodization , 2005 .

[46]  Craig A. Grimes,et al.  Fabrication of nanoporous tungsten oxide by galvanostatic anodization , 2003 .

[47]  G. M. Krembs Residual Tritiated Water in Anodized Tantalum Films , 1963 .