Shape-specific activation of occipital cortex in an early blind echolocation expert

[1]  Daniel Ansari,et al.  The function of the left angular gyrus in mental arithmetic: Evidence from the associative confusion effect , 2013, Human brain mapping.

[2]  M. Ptito,et al.  Crossmodal Recruitment of the Ventral Visual Stream in Congenital Blindness , 2012, Neural plasticity.

[3]  David Whitney,et al.  Ultrafine spatial acuity of blind expert human echolocators , 2012, Experimental Brain Research.

[4]  Morris Moscovitch,et al.  A Hippocampal Marker of Recollection Memory Ability among Healthy Young Adults: Contributions of Posterior and Anterior Segments , 2011, Neuron.

[5]  Stephen R. Arnott,et al.  The auditory dorsal pathway: Orienting vision , 2011, Neuroscience & Biobehavioral Reviews.

[6]  Jonathan S. Cant,et al.  Scratching Beneath the Surface: New Insights into the Functional Properties of the Lateral Occipital Area and Parahippocampal Place Area , 2011, The Journal of Neuroscience.

[7]  Ross M. VanDerKlok,et al.  Shape from sound: Evidence for a shape operator in the lateral occipital cortex , 2011, Neuropsychologia.

[8]  M. Goodale,et al.  Citation for Published Item: Use Policy Neural Correlates of Natural Human Echolocation in Early and Late Blind Echolocation Experts , 2022 .

[9]  Jung-Kyong Kim,et al.  Tactile–Auditory Shape Learning Engages the Lateral Occipital Complex , 2011, The Journal of Neuroscience.

[10]  Kirill V Nourski,et al.  Representation of temporal sound features in the human auditory cortex , 2011, Reviews in the neurosciences.

[11]  G. Vandewalle,et al.  Functional specialization for auditory–spatial processing in the occipital cortex of congenitally blind humans , 2011, Proceedings of the National Academy of Sciences.

[12]  J. Rauschecker,et al.  Preserved Functional Specialization for Spatial Processing in the Middle Occipital Gyrus of the Early Blind , 2010, Neuron.

[13]  Mats E Nilsson,et al.  Human Echolocation: Blind and Sighted Persons' Ability to Detect Sounds Recorded in the Presence of a Reflecting Object , 2010, Perception.

[14]  Masud Husain,et al.  A deficit of spatial remapping in constructional apraxia after right-hemisphere stroke. , 2010, Brain : a journal of neurology.

[15]  C. Price The anatomy of language: a review of 100 fMRI studies published in 2009 , 2010, Annals of the New York Academy of Sciences.

[16]  Robert W. Kentridge,et al.  Separate processing of texture and form in the ventral stream: evidence from FMRI and visual agnosia. , 2010, Cerebral cortex.

[17]  G. Legge,et al.  Retinotopically Specific Reorganization of Visual Cortex for Tactile Pattern Recognition , 2009, Current Biology.

[18]  Pablo Luis López Espí,et al.  Physical Analysis of Several Organic Signals for Human Echolocation: Oral Vacuum Pulses , 2009 .

[19]  Stefan Uppenkamp,et al.  Spatial dissociation of changes of level and signal-to-noise ratio in auditory cortex for tones in noise , 2008, NeuroImage.

[20]  Jonathan S. Cant,et al.  Crinkling and crumpling: An auditory fMRI study of material properties , 2008, NeuroImage.

[21]  M. Moscovitch,et al.  Top-down and bottom-up attention to memory: A hypothesis (AtoM) on the role of the posterior parietal cortex in memory retrieval , 2008, Neuropsychologia.

[22]  Karl J. Friston,et al.  The effect of prior visual information on recognition of speech and sounds. , 2008, Cerebral cortex.

[23]  U. Noppeney The effects of visual deprivation on functional and structural organization of the human brain , 2007, Neuroscience & Biobehavioral Reviews.

[24]  William M. Stern,et al.  Shape conveyed by visual-to-auditory sensory substitution activates the lateral occipital complex , 2007, Nature Neuroscience.

[25]  C. Spence,et al.  Developmental vision determines the reference frame for the multisensory control of action , 2007, Proceedings of the National Academy of Sciences.

[26]  C. Veraart,et al.  Functional Cerebral Reorganization for Auditory Spatial Processing and Auditory Substitution of Vision in Early Blind Subjects , 2006 .

[27]  David A. Medler,et al.  Distinct Brain Systems for Processing Concrete and Abstract Concepts , 2005, Journal of Cognitive Neuroscience.

[28]  E. DeYoe,et al.  Distinct Cortical Pathways for Processing Tool versus Animal Sounds , 2005, The Journal of Neuroscience.

[29]  Claude Alain,et al.  Assessing the auditory dual-pathway model in humans , 2004, NeuroImage.

[30]  Ravi S. Menon,et al.  Haptic study of three-dimensional objects activates extrastriate visual areas , 2002, Neuropsychologia.

[31]  M. Raichle,et al.  Adaptive changes in early and late blind: a FMRI study of verb generation to heard nouns. , 2002, Journal of neurophysiology.

[32]  T. Hendler,et al.  Convergence of visual and tactile shape processing in the human lateral occipital complex. , 2002, Cerebral cortex.

[33]  A. Ishai,et al.  Distributed and Overlapping Representations of Faces and Objects in Ventral Temporal Cortex , 2001, Science.

[34]  N. Kanwisher,et al.  The lateral occipital complex and its role in object recognition , 2001, Vision Research.

[35]  A R Palmer,et al.  Functional magnetic resonance imaging measurements of sound-level encoding in the absence of background scanner noise. , 2001, The Journal of the Acoustical Society of America.

[36]  T. Hendler,et al.  Visuo-haptic object-related activation in the ventral visual pathway , 2001, Nature Neuroscience.

[37]  A R Palmer,et al.  Modulation and task effects in auditory processing measured using fMRI , 2000, Human brain mapping.

[38]  Richard S. J. Frackowiak,et al.  Navigation-related structural change in the hippocampi of taxi drivers. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[39]  J. Rauschecker,et al.  A Positron Emission Tomographic Study of Auditory Localization in the Congenitally Blind , 2000, The Journal of Neuroscience.

[40]  S. Posse,et al.  Intensity coding of auditory stimuli: an fMRI study , 1998, Neuropsychologia.

[41]  Leslie G. Ungerleider,et al.  A neural system for human visual working memory. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[42]  R W Cox,et al.  AFNI: software for analysis and visualization of functional magnetic resonance neuroimages. , 1996, Computers and biomedical research, an international journal.

[43]  J. B. Pittenger,et al.  Human Echolocation as a Basic Form of Perception and Action , 1995 .

[44]  R. Malach,et al.  Object-related activity revealed by functional magnetic resonance imaging in human occipital cortex. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[45]  J W Belliveau,et al.  Borders of multiple visual areas in humans revealed by functional magnetic resonance imaging. , 1995, Science.

[46]  J. Talairach,et al.  Co-Planar Stereotaxic Atlas of the Human Brain: 3-Dimensional Proportional System: An Approach to Cerebral Imaging , 1988 .

[47]  E. Switkes,et al.  Deoxyglucose analysis of retinotopic organization in primate striate cortex. , 1982, Science.

[48]  D. Whitteridge,et al.  The representation of the visual field on the cerebral cortex in monkeys , 1961, The Journal of physiology.

[49]  F. Lepore,et al.  Sensory rehabilitation in the plastic brain. , 2011, Progress in brain research.

[50]  Santani Teng,et al.  The acuity of echolocation: Spatial resolution in the sighted compared to expert performance. , 2011, Journal of visual impairment & blindness.

[51]  Jonathan S. Cant,et al.  fMR-adaptation reveals separate processing regions for the perception of form and texture in the human ventral stream , 2008, Experimental Brain Research.

[52]  M. Lassonde,et al.  Cross-modal plasticity for the spatial processing of sounds in visually deprived subjects , 2008, Experimental Brain Research.

[53]  Á. Pascual-Leone,et al.  The metamodal organization of the brain. , 2001, Progress in brain research.

[54]  R. Bowtell,et al.  “sparse” temporal sampling in auditory fMRI , 1999, Human brain mapping.

[55]  P. Huttenlocher,et al.  The development of synapses in striate cortex of man. , 1987, Human neurobiology.