Disturbance decoupling by behavioral feedback for linear differential-algebraic systems

[1]  Timo Reis,et al.  Observers and Dynamic Controllers for Linear Differential-Algebraic Systems , 2017, SIAM J. Control. Optim..

[2]  T. Berger,et al.  Observability of Linear Differential-Algebraic Systems: A Survey , 2017 .

[3]  Paul Van Dooren,et al.  Computing the regularization of a linear differential-algebraic system , 2015, Syst. Control. Lett..

[4]  Timo Reis,et al.  Regularization of linear time-invariant differential-algebraic systems , 2015, Syst. Control. Lett..

[5]  Stephan Trenn,et al.  Kalman controllability decompositions for differential-algebraic systems , 2014, Syst. Control. Lett..

[6]  Thomas Berger,et al.  Zero Dynamics and Stabilization for Linear DAEs , 2014 .

[7]  Thomas Berger,et al.  Zero dynamics and funnel control of general linear differential-algebraic systems , 2016 .

[8]  Stephan Trenn,et al.  Addition to: The quasi-Kronecker from for matrix pencils , 2012 .

[9]  René Lamour,et al.  Differential-Algebraic Equations: A Projector Based Analysis , 2013 .

[10]  T. Berger On differential-algebraic control systems , 2013 .

[11]  T. Berger,et al.  Hamburger Beiträge zur Angewandten Mathematik Controllability of linear differential-algebraic systems-A survey , 2012 .

[12]  T. Berger,et al.  The quasi-Weierstraß form for regular matrix pencils , 2012 .

[13]  Stephan Trenn,et al.  The Quasi-Kronecker Form For Matrix Pencils , 2012, SIAM J. Matrix Anal. Appl..

[14]  Timo Reis,et al.  Zero dynamics and funnel control of linear differential-algebraic systems , 2012, Math. Control. Signals Syst..

[15]  Timo Reis,et al.  Chapter 7: Normal Forms, High-Gain, and Funnel Control for Linear Differential-Algebraic Systems , 2012 .

[16]  Volker Mehrmann,et al.  Chapter 2: Regularization of Linear and Nonlinear Descriptor Systems , 2012 .

[17]  Timo Reis,et al.  NORMAL FORMS, HIGH-GAIN AND FUNNEL CONTROL FOR LINEAR DIFFERENTIAL-ALGEBRAIC SYSTEMS , 2011 .

[18]  Volker Mehrmann,et al.  Regularization of linear and nonlinear descriptor systems , 2011 .

[19]  M. Isabel DISTURBANCE DECOUPLING FOR SINGULAR SYSTEMS BY PROPORTIONAL AND DERIVATIVE FEEDBACK AND PROPORTIONAL AND DERIVATIVE OUTPUT INJECTION , 2009 .

[20]  I. Higueras,et al.  DIFFERENTIAL-ALGEBRAIC SYSTEMS: ANALYTICAL ASPECTS AND CIRCUIT APPLICATIONS , 2009 .

[21]  Ricardo Riaza,et al.  Differential-Algebraic Systems: Analytical Aspects and Circuit Applications , 2008 .

[22]  J. Willems The Behavioral Approach to Open and Interconnected Systems , 2007, IEEE Control Systems.

[23]  Volker Mehrmann,et al.  Differential-Algebraic Equations: Analysis and Numerical Solution , 2006 .

[24]  A. A. Shcheglova,et al.  Stability of Linear Differential-Algebraic Systems , 2004 .

[25]  Arjan van der Schaft,et al.  Compatibility of behavior interconnections , 2003, 2003 European Control Conference (ECC).

[26]  Harry L. Trentelman,et al.  The Behavioral Approach as a Paradigm for Modeling Interconnected Systems , 2003, Eur. J. Control.

[27]  Harry L. Trentelman,et al.  Stabilization, pole placement, and regular implementability , 2002, IEEE Trans. Autom. Control..

[28]  Frank M. Callier Book review: J. W. Polderman and J.C. Willems, "Introduction to Mathematical Systems Theory: a Behavioral Approach" (Springer Verlag 1998) , 2002 .

[29]  Harry L. Trentelman,et al.  Control theory for linear systems , 2002 .

[30]  Delin Chu A case study for the open question: disturbance decoupling problem for singular systems by output feedback , 2001, IEEE Trans. Autom. Control..

[31]  Volker Mehrmann,et al.  Disturbance Decoupling for Descriptor Systems by State Feedback , 2000, SIAM J. Control. Optim..

[32]  Anton A. Stoorvogel,et al.  The H ∞ control problem: a state space approach , 2000 .

[33]  Jan C. Willems,et al.  Introduction to mathematical systems theory: a behavioral approach, Texts in Applied Mathematics 26 , 1999 .

[34]  J. Willems On interconnections, control, and feedback , 1997, IEEE Trans. Autom. Control..

[35]  Linda R. Petzold,et al.  Numerical solution of initial-value problems in differential-algebraic equations , 1996, Classics in applied mathematics.

[36]  Guy Lebret,et al.  Structural solution of the disturbance decoupling problem for implicit linear discrete-time systems , 1994 .

[37]  G. Basile,et al.  Controlled and conditioned invariants in linear system theory , 1992 .

[38]  The disturbance decoupling problem with measurement feedback and stability for systems with direct feedthrough matrices , 1991 .

[39]  J. Willems Paradigms and puzzles in the theory of dynamical systems , 1991 .

[40]  Andrzej Banaszuk,et al.  The disturbance decoupling problem for implicit linear discrete-time systems , 1990 .

[41]  L. R. Fletcher,et al.  On disturbance decoupling in descriptor systems , 1989 .

[42]  A. Banaszuk,et al.  On Hautus-type conditions for controllability of implicit linear discrete-time systems , 1989 .

[43]  P. Dooren,et al.  An improved algorithm for the computation of Kronecker's canonical form of a singular pencil , 1988 .

[44]  K. Özçaldiran A geometric characterization of the reachable and the controllable subspaces of descriptor systems , 1986 .

[45]  A. Isidori,et al.  A frequency domain philosophy for nonlinear systems, with applications to stabilization and to adaptive control , 1984, The 23rd IEEE Conference on Decision and Control.

[46]  Jan Willems,et al.  Almost invariant subspaces: An approach to high gain feedback design , 1981, 1981 20th IEEE Conference on Decision and Control including the Symposium on Adaptive Processes.

[47]  J. Willems Almost invariant subspaces: An approach to high gain feedback design--Part II: Almost conditionally invariant subspaces , 1981 .

[48]  P. Dooren The Computation of Kronecker's Canonical Form of a Singular Pencil , 1979 .

[49]  J. Pearson Linear multivariable control, a geometric approach , 1977 .

[50]  K. Wong The eigenvalue problem λTx + Sx , 1974 .

[51]  A. Morse,et al.  Decoupling and Pole Assignment in Linear Multivariable Systems: A Geometric Approach , 1970 .