Quantum Confinement and Host/Guest Chemistry: Probing a New Dimension

Nanoparticulate metals and semiconductors that have atomic arrangements at the interface of molecular clusters and "infinite" solid-state arrays of atoms have distinctive properties determined by the extent of confinement of highly delocalized valence electrons. At this interface, the total number of atoms and the geometrical disposition of each atom can be used to significantly modify the electronic and photonic response of the medium. In addition to teh novel inherent physical properties of the quantum-confined moieties, their "packaging" into nanocomposite bulk materials can be used to define the confinement surface states and environment, intercluster interactions, the quantum-confinement geometry, and the effective charge-carrier density of the bulk. Current approaches for generating nanostructures of conducting materials are briefly reviewed, especially the use of three-dimensional crystalline superlattices as hosts for quantum-confined semiconductor atom arrays (such as quantum wires and dots) with controlled inter-quantum-structure tunneling.

[1]  R. Haushalter,et al.  Structure of a Three-Dimensional, Microporous Molybdenum Phosphate with Large Cavities , 1989, Science.

[2]  A. Bard,et al.  A charge-induced absorption-edge shift in CdS semiconductor films , 1989 .

[3]  Louis E. Brus,et al.  SYNTHESIS, STABILIZATION, AND ELECTRONIC STRUCTURE OF QUANTUM SEMICONDUCTOR NANOCLUSTERS , 1989 .

[4]  M. Fox,et al.  Photoactivity of zeolite-supported cadmium sulfide: hydrogen evolution in the presence of sacrificial donors , 1989 .

[5]  R. Haushalter,et al.  [Et4N]6[Na14Mo24P17O97(OH)31]·xH2O: A Hollow Cluster Filled with 12 Na⊕ Ions and a H3PO4 Molecule , 1989 .

[6]  I. Dance,et al.  Cadmium polysulfide complexes, (Cd(S sub x )(S sub y )) sup 2 minus : Syntheses, crystal and molecular structures, and sup 113 Cd NMR studies , 1989 .

[7]  M. Yao,et al.  Photo-Induced Phenomena in Isolated Selenium Chains , 1989 .

[8]  D. Ricard Nonlinear optics in composites and in heterogeneous media , 1989 .

[9]  M. Steigerwald,et al.  The preparation of large semiconductor clusters via the pyrolysis of a molecular precursor , 1989 .

[10]  M. Steigerwald,et al.  Biosynthesis of cadmium sulphide quantum semiconductor crystallites , 1989, Nature.

[11]  David A. B. Miller,et al.  Linear and nonlinear optical properties of semiconductor quantum wells , 1989 .

[12]  G. Stucky,et al.  Structure and optical properties of cadmium sulfide superclusters in zeolite hosts , 1989 .

[13]  G. Stucky,et al.  Synthesis and characterization of group III-V semiconductor clusters: gallium phosphide GaP in zeolite Y , 1989 .

[14]  J. M. Bennett,et al.  The Next Generation: Synthesis, Characterization, and Structure of Metal Sulfide-Based Microporous Solids , 1989 .

[15]  A. Bard,et al.  Effect of excess charge on band energetics (optical absorption edge and carrier redox potentials) in small semiconductor particles , 1989 .

[16]  T. Bein,et al.  Encapsulation of lead sulfide molecular clusters into solid matrixes. Structural analysis with x-ray absorption spectroscopy , 1989 .

[17]  G. Stucky,et al.  Stabilization of cadmium selenide molecular clusters in zeolite Y: EXAFS and X-ray diffraction studies , 1989 .

[18]  Alan Campion,et al.  Size quantization effects in cadmium sulfide layers formed by a Langmuir-Blodgett technique , 1988 .

[19]  Louis E. Brus,et al.  Electronic states of semiconductor clusters: Homogeneous and inhomogeneous broadening of the optical spectrum , 1988 .

[20]  Mark E. Davis,et al.  VPI-5: The first molecular sieve with pores larger than 10 Ångstroms , 1988 .

[21]  Ying Wang,et al.  Photoluminescence and relaxation dynamics of cadmium sulfide superclusters in zeolites , 1988 .

[22]  T. D. Harris,et al.  Surface derivatization and isolation of semiconductor cluster molecules , 1988 .

[23]  Mark E. Davis,et al.  A molecular sieve with eighteen-membered rings , 1988, Nature.

[24]  G. Stucky,et al.  Solid-state silicon-29 NMR and infrared studies of the reactions of mono- and polyfunctional silanes with zeolite Y surfaces , 1988 .

[25]  T. Bein,et al.  Characterization of selenium-loaded molecular sieves A, X, Y, AlPO-5, and mordenite , 1988 .

[26]  A. Henglein Mechanism of Reactions on Colloidal Microelectrodes and Size Quantization Effects , 1987, Electrochemistry II.

[27]  C. Bethea,et al.  Quantum well avalanche multiplication initiated by 10 μm intersubband absorption and photoexcited tunneling , 1987 .

[28]  David A. B. Miller,et al.  Theory of the linear and nonlinear optical properties of semiconductor microcrystallites. , 1987, Physical review. B, Condensed matter.

[29]  Y. Wang,et al.  Degenerate four-wave mixing of CdS/polymer composite , 1987 .

[30]  R. Pease,et al.  Exposure of calcium fluoride resist with the scanning tunneling microscope , 1987 .

[31]  Norman Herron,et al.  Optical properties of CdS and PbS clusters encapsulated in zeolites , 1987 .

[32]  Miller,et al.  Tunneling-assisted photon emission from quantum wells. , 1986, Physical review. B, Condensed matter.

[33]  N. Herron A cobalt oxygen carrier in zeolite Y. A molecular "ship in a bottle" , 1986 .

[34]  Stephen J. Pearton,et al.  Optically detected carrier confinement to one and zero dimension in GaAs quantum well wires and boxes , 1986 .

[35]  M. Kawashima,et al.  Low-Temperature Growth of GaAs and AlAs-GaAs Quantum-Well Layers by Modified Molecular Beam Epitaxy , 1986 .

[36]  Louis E. Brus,et al.  Electronic wave functions in semiconductor clusters: experiment and theory , 1986 .

[37]  Shah,et al.  Femtosecond excitation of nonthermal carrier populations in GaAs quantum wells. , 1986, Physical review letters.

[38]  S. Yamasaki,et al.  The Isolated Se Chains in the Channels of Mordenite Crystal , 1986 .

[39]  G. Stucky,et al.  Interaction of tricoordinated phosphorus compounds with zeolites , 1986 .

[40]  Miller,et al.  Theory of transient excitonic optical nonlinearities in semiconductor quantum-well structures. , 1985, Physical review. B, Condensed matter.

[41]  L. C. West,et al.  First observation of an extremely large‐dipole infrared transition within the conduction band of a GaAs quantum well , 1985 .

[42]  Downer,et al.  Femtosecond dynamics of resonantly excited excitons in room-temperature GaAs quantum wells. , 1985, Physical review letters.

[43]  T. Takahashi,et al.  X-Ray Photoemission Study of Orthorhombic Selenium; a New Allotrope of Crystalline Selenium , 1985 .

[44]  D. Chemla TWO-DIMENSIONAL SEMICONDUCTORS: RECENT DEVELOPMENT , 1985 .

[45]  T. C. L. G. Sollner,et al.  Quantum well oscillators , 1984 .

[46]  I. Dance,et al.  Syntheses, properties, and molecular and crystal structures of (Me4N)4[E4M10(SPh)16] (E = sulfur or selenium; M = zinc or cadmium): molecular supertetrahedral fragments of the cubic metal chalcogenide lattice , 1984 .

[47]  R. Dupuis,et al.  Growth and characterization of high-quality MOCVD AlGaAs/GaAs single quantum wells , 1984 .

[48]  D. A. Kleinman,et al.  Energy-gap discontinuities and effective masses for G a A s − Al x Ga 1 − x As quantum wells , 1984 .

[49]  R. A. Logan,et al.  Toward quantum well wires: Fabrication and optical properties , 1982 .

[50]  Hiroyuki Sakaki,et al.  Scattering Suppression and High-Mobility Effect of Size-Quantized Electrons in Ultrafine Semiconductor Wire Structures , 1980 .

[51]  Y. Miyamoto Structure and Phase Transformation of Rhombohedral Selenium Composed of Se6 Molecules , 1980 .

[52]  R. Gillespie,et al.  Preparation, spectroscopic properties, and crystal structures of Te6(AsF6)4.2AsF3 and Te6(AsF6)4.2SO2: a new trigonal-prismatic cluster cation, hexatellurium(4+) , 1979 .

[53]  T. Smirnova,et al.  Vibronic structure in the spectra of two-photon absorption of organic dye solutions , 1979 .

[54]  R. P. Messmer From finite clusters of atoms to the infinite solid. I. Solution of the eigenvalue problem of a simple tight binding model for clusters of arbitrary size , 1977 .

[55]  L. Esaki,et al.  Tunneling in a finite superlattice , 1973 .

[56]  P. Cherin,et al.  Refinement of the crystal structure of a-monoclinic Se , 1972 .

[57]  D. Olson,et al.  Tellurium-loaded zeolites. III. The structure of TeNaX , 1972 .

[58]  G. D. Watkins,et al.  Linear Combination of Atomic Orbital-Molecular Orbital Treatment of the Deep Defect Level in a Semiconductor: Nitrogen in Diamond , 1970 .

[59]  A. Levasseur,et al.  Les Systèmes B2O3MOMS Boracites MS (M = Mg, Mn, Fe, Cd) et Sodalites MS (M = Co, Zn) , 1970 .

[60]  Raphael Tsu,et al.  Superlattice and negative differential conductivity in semiconductors , 1970 .

[61]  P. Cherin,et al.  The crystal structure of trigonal selenium , 1967 .

[62]  E. Husfeldt Hiatus hernia in infants and adults. , 1953, Great Ormond Street journal.

[63]  R. D. Burbank The crystal structure of β‐monoclinic selenium , 1952 .